These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38725529)

  • 41. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of systolic and diastolic arterial wall shear stress in the ascending aorta.
    Efstathopoulos EP; Patatoukas G; Pantos I; Benekos O; Katritsis D; Kelekis NL
    Phys Med; 2008 Dec; 24(4):196-203. PubMed ID: 18343178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. WSSNet: Aortic Wall Shear Stress Estimation Using Deep Learning on 4D Flow MRI.
    Ferdian E; Dubowitz DJ; Mauger CA; Wang A; Young AA
    Front Cardiovasc Med; 2021; 8():769927. PubMed ID: 35141290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries.
    Bateman RM; Sharpe MD; Jagger JE; Ellis CG
    Crit Care; 2015 Nov; 19():389. PubMed ID: 26537126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models.
    Jordanski M; Radovic M; Milosevic Z; Filipovic N; Obradovic Z
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):537-544. PubMed ID: 28113333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows.
    Arzani A; Gambaruto AM; Chen G; Shadden SC
    Biomech Model Mechanobiol; 2017 Jun; 16(3):787-803. PubMed ID: 27858174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transient wall shear stress estimation in coronary bifurcations using convolutional neural networks.
    Gharleghi R; Sowmya A; Beier S
    Comput Methods Programs Biomed; 2022 Oct; 225():107013. PubMed ID: 35901629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and hemodynamics of microvascular networks: heterogeneity and correlations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1713-22. PubMed ID: 7503269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perfusion pressure and blood flow determine microvascular apparent viscosity.
    Yalcin O; Ortiz D; Williams AT; Johnson PC; Cabrales P
    Exp Physiol; 2015 Aug; 100(8):977-87. PubMed ID: 26011432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population.
    Callaghan FM; Grieve SM
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1174-H1181. PubMed ID: 30028202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity.
    Clavica F; Homsy A; Jeandupeux L; Obrist D
    Sci Rep; 2016 Nov; 6():36763. PubMed ID: 27857165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemodynamic response to thermal stress varies with sex and age: a murine MRI study.
    Crouch AC; Batra A; Greve JM
    Int J Hyperthermia; 2022; 39(1):69-80. PubMed ID: 34949124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasound deep learning for monitoring of flow-vessel dynamics in murine carotid artery.
    Park JH; Seo E; Choi W; Lee SJ
    Ultrasonics; 2022 Mar; 120():106636. PubMed ID: 34826686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models.
    Su B; Zhang JM; Zou H; Ghista D; Le TT; Chin C
    Comput Biol Med; 2020 Nov; 126():104038. PubMed ID: 33039809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration.
    Roustaei M; In Baek K; Wang Z; Cavallero S; Satta S; Lai A; O'Donnell R; Vedula V; Ding Y; Marsden AL; Hsiai TK
    J R Soc Interface; 2022 Feb; 19(187):20210898. PubMed ID: 35167770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration.
    Maung Ye SS; Phng LK
    PLoS Comput Biol; 2023 Dec; 19(12):e1011665. PubMed ID: 38048371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.