BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 38725856)

  • 21. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy.
    Bartish M; Del Rincón SV; Rudd CE; Saragovi HU
    Front Immunol; 2020; 11():564499. PubMed ID: 33133075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy.
    Tuccitto A; Shahaj E; Vergani E; Ferro S; Huber V; Rodolfo M; Castelli C; Rivoltini L; Vallacchi V
    Virchows Arch; 2019 Apr; 474(4):407-420. PubMed ID: 30374798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving Breast Cancer Responses to Immunotherapy-a Search for the Achilles Heel of the Tumor Microenvironment.
    Jenkins S; Wesolowski R; Gatti-Mays ME
    Curr Oncol Rep; 2021 Mar; 23(5):55. PubMed ID: 33755828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tumour associated glycans: A route to boost immunotherapy?
    Scott E; Elliott DJ; Munkley J
    Clin Chim Acta; 2020 Mar; 502():167-173. PubMed ID: 31870793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy.
    Yan L; Tan Y; Chen G; Fan J; Zhang J
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions.
    Pansy K; Uhl B; Krstic J; Szmyra M; Fechter K; Santiso A; Thüminger L; Greinix H; Kargl J; Prochazka K; Feichtinger J; Deutsch AJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NK Cell Metabolism and Tumor Microenvironment.
    Terrén I; Orrantia A; Vitallé J; Zenarruzabeitia O; Borrego F
    Front Immunol; 2019; 10():2278. PubMed ID: 31616440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review.
    Li Y; Liu W; Xu H; Zhou Y; Xie W; Guo Y; Liao Z; Jiang X; Liu J; Ren C
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130032. PubMed ID: 38342267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CCL21 Programs Immune Activity in Tumor Microenvironment.
    Sharma S; Kadam P; Dubinett S
    Adv Exp Med Biol; 2020; 1231():67-78. PubMed ID: 32060847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy.
    Sheppard AD; Lysaght J
    Methods Mol Biol; 2020; 2184():233-263. PubMed ID: 32808230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.
    Balta E; Wabnitz GH; Samstag Y
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy.
    Qiu Q; Lin Y; Ma Y; Li X; Liang J; Chen Z; Liu K; Huang Y; Luo H; Huang R; Luo L
    Front Immunol; 2020; 11():612202. PubMed ID: 33488618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy.
    Wang B; Zhao Q; Zhang Y; Liu Z; Zheng Z; Liu S; Meng L; Xin Y; Jiang X
    J Exp Clin Cancer Res; 2021 Jan; 40(1):24. PubMed ID: 33422072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anti-angiogenesis: Opening a new window for immunotherapy.
    Guo F; Cui J
    Life Sci; 2020 Oct; 258():118163. PubMed ID: 32738363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer.
    Zhao L; Liu Y; Zhang S; Wei L; Cheng H; Wang J; Wang J
    Cell Death Dis; 2022 Apr; 13(4):378. PubMed ID: 35444235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between platelets and the cancer immune microenvironment.
    Tuerhong N; Yang Y; Wang C; Huang P; Li Q
    Crit Rev Oncol Hematol; 2024 Jul; 199():104380. PubMed ID: 38718939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Opportunities that improve the effectivity of immunotherapy, bringing targeted therapies into focus].
    Maráz A; Varga L; Küronya Z
    Magy Onkol; 2019 Sep; 63(3):209-216. PubMed ID: 31533141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long Non-Coding RNAs in the Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential.
    Pi YN; Qi WC; Xia BR; Lou G; Jin WL
    Front Immunol; 2021; 12():697083. PubMed ID: 34295338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.