These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38725908)

  • 21. Enzymatic Synthesis of 7',5'-Bicyclo-DNA Oligonucleotides.
    Diafa S; Evéquoz D; Leumann CJ; Hollenstein M
    Chem Asian J; 2017 Jun; 12(12):1347-1352. PubMed ID: 28371464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding sites of the polyamines putrescine, cadaverine, spermidine and spermine on A- and B-DNA located by simulated annealing.
    Bryson K; Greenall RJ
    J Biomol Struct Dyn; 2000 Dec; 18(3):393-412. PubMed ID: 11149516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallographic analysis of engineered polymerases synthesizing phosphonomethylthreosyl nucleic acid.
    Hajjar M; Chim N; Liu C; Herdewijn P; Chaput JC
    Nucleic Acids Res; 2022 Sep; 50(17):9663-9674. PubMed ID: 36124684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xylo-Configured oligonucleotides (XNA, xylo nucleic acid): synthesis of conformationally restricted derivatives and hybridization towards DNA and RNA complements.
    Poopeiko NE; Juhl M; Vester B; Sørensen MD; Wengel J
    Bioorg Med Chem Lett; 2003 Jul; 13(14):2285-90. PubMed ID: 12824019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity.
    Houlihan G; Arangundy-Franklin S; Porebski BT; Subramanian N; Taylor AI; Holliger P
    Nat Chem; 2020 Aug; 12(8):683-690. PubMed ID: 32690899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic Synthesis of TNA Protects DNA Nanostructures.
    Qin B; Wang Q; Wang Y; Han F; Wang H; Jiang S; Yu H
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317334. PubMed ID: 38323479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiology of the natural polyamines putrescine, spermidine and spermine.
    Raina A; Jänne J
    Med Biol; 1975 Jun; 53(3):121-47. PubMed ID: 169440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of polyamines in the synthesis of RNA in mycobacteria.
    Jain A; Tyagi AK
    Mol Cell Biochem; 1987 Nov; 78(1):3-8. PubMed ID: 2457796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyamines stimulate DNA-directed DNA synthesis catalyzed by mammalian type C retroviral DNA polymerases.
    Marcus SL; Smith SW; Bacchi CJ
    J Biol Chem; 1981 Apr; 256(7):3460-4. PubMed ID: 6259167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase.
    Jackson LN; Chim N; Shi C; Chaput JC
    Nucleic Acids Res; 2019 Jul; 47(13):6973-6983. PubMed ID: 31170294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics.
    Taylor AI; Houlihan G; Holliger P
    Cold Spring Harb Perspect Biol; 2019 Jun; 11(6):. PubMed ID: 31160351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structural diversity of artificial genetic polymers.
    Anosova I; Kowal EA; Dunn MR; Chaput JC; Van Horn WD; Egli M
    Nucleic Acids Res; 2016 Feb; 44(3):1007-21. PubMed ID: 26673703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA-dependent RNA polymerases I and II from kidney. Effect of polyamines on the in vitro transcription of DNA and chromatin.
    Jänne O; Bardin CW; Jacob ST
    Biochemistry; 1975 Aug; 14(16):3589-97. PubMed ID: 1164498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting non-coding RNA family members with artificial endonuclease XNAzymes.
    Donde MJ; Rochussen AM; Kapoor S; Taylor AI
    Commun Biol; 2022 Sep; 5(1):1010. PubMed ID: 36153384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis.
    Rietmeyer L; Li De La Sierra-Gallay I; Schepers G; Dorchêne D; Iannazzo L; Patin D; Touzé T; van Tilbeurgh H; Herdewijn P; Ethève-Quelquejeu M; Fonvielle M
    Nucleic Acids Res; 2022 Nov; 50(20):11415-11425. PubMed ID: 36350642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases.
    Nikoomanzar A; Dunn MR; Chaput JC
    Anal Chem; 2017 Dec; 89(23):12622-12625. PubMed ID: 29148714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Parallelized Screening of Functionally Enhanced XNA Aptamers in Uniform Hydrogel Particles.
    Yik EJ; Medina E; Paegel BM; Chaput JC
    ACS Synth Biol; 2023 Jul; 12(7):2127-2134. PubMed ID: 37410977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.