These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38725908)

  • 41. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of 3'-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides.
    Flamme M; Hanlon S; Marzuoli I; Püntener K; Sladojevich F; Hollenstein M
    Commun Chem; 2022 Jun; 5(1):68. PubMed ID: 36697944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of polyamines on DNA synthesis using various subcellular DNA polymerases extracted from normal rat liver, tumour-bearing rat liver, and tumour cells.
    Taguchi T; Kurata S; Ohashi M
    Cell Biochem Funct; 2001 Mar; 19(1):19-26. PubMed ID: 11223867
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties.
    Asanuma H; Kamiya Y; Kashida H; Murayama K
    Chem Commun (Camb); 2022 Mar; 58(25):3993-4004. PubMed ID: 35107445
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding.
    Alves Ferreira-Bravo I; DeStefano JJ
    Viruses; 2021 Oct; 13(10):. PubMed ID: 34696413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.
    Vanmeert M; Razzokov J; Mirza MU; Weeks SD; Schepers G; Bogaerts A; Rozenski J; Froeyen M; Herdewijn P; Pinheiro VB; Lescrinier E
    Nucleic Acids Res; 2019 Jul; 47(13):7130-7142. PubMed ID: 31334814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stable ribonucleic acid synthesis in stringent (rel+) and relaxed (rel-) polyamine auxotrophs of Escherichia coli K-12.
    Srinivason PR; Young DV; Maas W
    J Bacteriol; 1973 Nov; 116(2):648-55. PubMed ID: 4583245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection.
    Gerber PP; Donde MJ; Matheson NJ; Taylor AI
    Nat Commun; 2022 Nov; 13(1):6716. PubMed ID: 36385143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering-driven biological insights into DNA polymerase mechanism.
    Pinheiro VB
    Curr Opin Biotechnol; 2019 Dec; 60():9-16. PubMed ID: 30502514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyamines and their potential to be antimutagens.
    Pillai SP; Shankel DM
    Mutat Res; 1997 Jul; 377(2):217-24. PubMed ID: 9247617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition.
    Beck KM; Krogh MB; Hornum M; Ludford PT; Tor Y; Nielsen P
    Org Biomol Chem; 2020 Sep; 18(36):7213-7223. PubMed ID: 32909574
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polyamines in the synthesis of bacteriophage deoxyribonucleic acid. II. Requirement for polyamines in T4 infection of a polyamine auxotroph.
    Dion AS; Cohen SS
    J Virol; 1972 Mar; 9(3):423-30. PubMed ID: 4552550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards XNA nanotechnology: new materials from synthetic genetic polymers.
    Pinheiro VB; Holliger P
    Trends Biotechnol; 2014 Jun; 32(6):321-8. PubMed ID: 24745974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of polyamines on the activity of DNA polymerase I from Escherichia coli.
    Osland A; Kleppe K
    Biochim Biophys Acta; 1978 Sep; 520(2):317-30. PubMed ID: 361088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases.
    Song P; Zhang R; He C; Chen T
    Curr Protoc; 2021 Jul; 1(7):e188. PubMed ID: 34232574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards the controlled enzymatic synthesis of LNA containing oligonucleotides.
    Sabat N; Katkevica D; Pajuste K; Flamme M; Stämpfli A; Katkevics M; Hanlon S; Bisagni S; Püntener K; Sladojevich F; Hollenstein M
    Front Chem; 2023; 11():1161462. PubMed ID: 37179777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Xeno-nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding.
    Ferreira-Bravo IA; DeStefano JJ
    bioRxiv; 2021 Jul; ():. PubMed ID: 34282416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytoplasmic nucleic acid-based XNAs directly enhance live cardiac cell function by a Ca
    Thompson BR; Soller KJ; Vetter A; Yang J; Veglia G; Bowser MT; Metzger JM
    J Mol Cell Cardiol; 2019 May; 130():1-9. PubMed ID: 30849419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyamine stress at high pH in Escherichia coli K-12.
    Yohannes E; Thurber AE; Wilks JC; Tate DP; Slonczewski JL
    BMC Microbiol; 2005 Oct; 5():59. PubMed ID: 16223443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.