These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 38725991)

  • 21. Engineering Bacteriophages as Versatile Biologics.
    Kilcher S; Loessner MJ
    Trends Microbiol; 2019 Apr; 27(4):355-367. PubMed ID: 30322741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields.
    Jamal M; Bukhari SMAUS; Andleeb S; Ali M; Raza S; Nawaz MA; Hussain T; Rahman SU; Shah SSA
    J Basic Microbiol; 2019 Feb; 59(2):123-133. PubMed ID: 30485461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.
    Vaks L; Benhar I
    Methods Mol Biol; 2011; 726():187-206. PubMed ID: 21424451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.
    Fatemi F; Amini SM; Kharrazi S; Rasaee MJ; Mazlomi MA; Asadi-Ghalehni M; Rajabibazl M; Sadroddiny E
    Colloids Surf B Biointerfaces; 2017 Nov; 159():770-780. PubMed ID: 28886513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virus-based chemical and biological sensing.
    Mao C; Liu A; Cao B
    Angew Chem Int Ed Engl; 2009; 48(37):6790-810. PubMed ID: 19662666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of bacteriophages in sensor development.
    Peltomaa R; López-Perolio I; Benito-Peña E; Barderas R; Moreno-Bondi MC
    Anal Bioanal Chem; 2016 Mar; 408(7):1805-28. PubMed ID: 26472318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered Superinfective Pf Phage Prevents Dissemination of Pseudomonas aeruginosa in a Mouse Burn Model.
    Prokopczuk FI; Im H; Campos-Gomez J; Orihuela CJ; Martínez E
    mBio; 2023 Jun; 14(3):e0047223. PubMed ID: 37039641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.
    Viertel TM; Ritter K; Horz HP
    J Antimicrob Chemother; 2014 Sep; 69(9):2326-36. PubMed ID: 24872344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phage therapy: From biological mechanisms to future directions.
    Strathdee SA; Hatfull GF; Mutalik VK; Schooley RT
    Cell; 2023 Jan; 186(1):17-31. PubMed ID: 36608652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteriophages and nanostructured materials.
    Hyman P
    Adv Appl Microbiol; 2012; 78():55-73. PubMed ID: 22305093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteriophage-based biomaterials for tissue regeneration.
    Cao B; Li Y; Yang T; Bao Q; Yang M; Mao C
    Adv Drug Deliv Rev; 2019 May; 145():73-95. PubMed ID: 30452949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteriophage Genetic Edition Using LSTM.
    Ataee S; Brochet X; Peña-Reyes CA
    Front Bioinform; 2022; 2():932319. PubMed ID: 36353213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically modified filamentous phage as bactericidal agents: a pilot study.
    Hagens S; Bläsi U
    Lett Appl Microbiol; 2003; 37(4):318-23. PubMed ID: 12969496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antigen-Antibody Interaction-Based Self-Healing Capability of Hybrid Hydrogels Composed of Genetically Engineered Filamentous Viruses and Gold Nanoparticles.
    Sawada T; Serizawa T
    Protein Pept Lett; 2018; 25(1):64-67. PubMed ID: 29237366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phage nanoparticle as a carrier for controlling fungal infection.
    Xu S; Zhang G; Wang M; Lin T; Liu W; Wang Y
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3397-3403. PubMed ID: 35501488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phages as delivery vehicles and phage display.
    Makky S; Abdelrahman F; Easwaran M; Safwat A; El-Shibiny A
    Prog Mol Biol Transl Sci; 2023; 201():119-132. PubMed ID: 37770167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetically engineered nanofiber-like viruses for tissue regenerating materials.
    Merzlyak A; Indrakanti S; Lee SW
    Nano Lett; 2009 Feb; 9(2):846-52. PubMed ID: 19140698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery.
    Yata T; Lee KY; Dharakul T; Songsivilai S; Bismarck A; Mintz PJ; Hajitou A
    Mol Ther Nucleic Acids; 2014 Aug; 3(8):e185. PubMed ID: 25118171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harnessing filamentous phages for enhanced stroke recovery.
    Li Y; Yang KD; Kong DC; Li XM; Duan HY; Ye JF
    Front Immunol; 2023; 14():1343788. PubMed ID: 38299142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.