These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 38725991)

  • 41. Bacteriophage steering of
    Ruest MK; Supina BSI; Dennis JJ
    J Bacteriol; 2023 Oct; 205(10):e0019623. PubMed ID: 37791751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repeated outbreaks drive the evolution of bacteriophage communication.
    Doekes HM; Mulder GA; Hermsen R
    Elife; 2021 Jan; 10():. PubMed ID: 33459590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications.
    Esteves NC; Scharf BE
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806089
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phage and phage cocktails formulations.
    Mani I
    Prog Mol Biol Transl Sci; 2023; 200():159-169. PubMed ID: 37739554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modified phages: novel antimicrobial agents to combat infectious diseases.
    Moradpour Z; Ghasemian A
    Biotechnol Adv; 2011; 29(6):732-8. PubMed ID: 21689739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Engineered M13 Filamentous Nanoparticle as an Antigen Carrier for a Malignant Melanoma Immunotherapeutic Strategy.
    Brišar N; Šuster K; Brezar SK; Vidmar R; Fonović M; Cör A
    Viruses; 2024 Feb; 16(2):. PubMed ID: 38400008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assembly of multimeric phage nanostructures through leucine zipper interactions.
    Sweeney RY; Park EY; Iverson BL; Georgiou G
    Biotechnol Bioeng; 2006 Oct; 95(3):539-45. PubMed ID: 16897782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of Bacteriophages in Nanotechnology.
    Paczesny J; Bielec K
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cultivation of a Lytic Double-Stranded RNA Bacteriophage Infecting Microvirgula aerodenitrificans Reveals a Mutualistic Parasitic Lifestyle.
    Cai X; Tian F; Teng L; Liu H; Tong Y; Le S; Zhang T
    J Virol; 2021 Aug; 95(17):e0039921. PubMed ID: 34133887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Applications of designer phage encoding recombinant gene payloads.
    Schmitt DS; Siegel SD; Selle K
    Trends Biotechnol; 2024 Mar; 42(3):326-338. PubMed ID: 37833198
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical bioelectronic nose of outstanding sensitivity and selectivity toward volatile organic compounds implemented with genetically engineered bacteriophage: Integrated study of multi-scale computational prediction and experimental validation.
    Park J; Lee JM; Chun H; Lee Y; Hong SJ; Jung H; Kim YJ; Kim WG; Devaraj V; Choi EJ; Oh JW; Han B
    Biosens Bioelectron; 2021 Apr; 177():112979. PubMed ID: 33477031
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid and reliable ultrasensitive detection of pathogenic H9N2 viruses through virus-binding phage nanofibers decorated with gold nanoparticles.
    Hou J; Qian X; Xu Y; Guo Z; Thierry B; Yang CT; Zhou X; Mao C
    Biosens Bioelectron; 2023 Oct; 237():115423. PubMed ID: 37311406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics.
    Abril AG; Carrera M; Notario V; Sánchez-Pérez Á; Villa TG
    Antibiotics (Basel); 2022 May; 11(5):. PubMed ID: 35625297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manufacturing of bacteriophages for therapeutic applications.
    João J; Lampreia J; Prazeres DMF; Azevedo AM
    Biotechnol Adv; 2021; 49():107758. PubMed ID: 33895333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacteriophages as a potential substitute for antibiotics: A comprehensive review.
    Kushwaha SO; Sahu SK; Yadav VK; Rathod MC; Patel D; Sahoo DK; Patel A
    Cell Biochem Funct; 2024 Apr; 42(3):e4022. PubMed ID: 38655589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene Co-occurrence Networks Reflect Bacteriophage Ecology and Evolution.
    Shapiro JW; Putonti C
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.
    Sunderland KS; Yang M; Mao C
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):1964-1992. PubMed ID: 27491926
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor.
    Whittle MJ; Bilverstone TW; van Esveld RJ; Lücke AC; Lister MM; Kuehne SA; Minton NP
    Microbiol Spectr; 2022 Feb; 10(1):e0229521. PubMed ID: 35107319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacteriophages of the Urinary Microbiome.
    Miller-Ensminger T; Garretto A; Brenner J; Thomas-White K; Zambom A; Wolfe AJ; Putonti C
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29378882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.