These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38726297)

  • 1. Automatic grading evaluation of winter wheat lodging based on deep learning.
    Zang H; Su X; Wang Y; Li G; Zhang J; Zheng G; Hu W; Shen H
    Front Plant Sci; 2024; 15():1284861. PubMed ID: 38726297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat lodging extraction using Improved_Unet network.
    Yu J; Cheng T; Cai N; Lin F; Zhou XG; Du S; Zhang D; Zhang G; Liang D
    Front Plant Sci; 2022; 13():1009835. PubMed ID: 36247550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model.
    Yang B; Zhu Y; Zhou S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification lodging degree of wheat using point cloud data and convolutional neural network.
    Li Y; Yang B; Zhou S; Cui Q
    Front Plant Sci; 2022; 13():968479. PubMed ID: 36237498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage.
    Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y
    Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring Wheat Lodging at Various Growth Stages.
    Jiang S; Hao J; Li H; Zuo C; Geng X; Sun X
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LodgeNet: an automated framework for precise detection and classification of wheat lodging severity levels in precision farming.
    Ali N; Mohammed A; Bais A; Sangha JS; Ruan Y; Cuthbert RD
    Front Plant Sci; 2023; 14():1255961. PubMed ID: 38093998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inversion of Winter Wheat Growth Parameters and Yield Under Different Water Treatments Based on UAV Multispectral Remote Sensing.
    Han X; Wei Z; Chen H; Zhang B; Li Y; Du T
    Front Plant Sci; 2021; 12():609876. PubMed ID: 34093601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Soybean Lodging Using UAV Imagery and Machine Learning.
    Sarkar S; Zhou J; Scaboo A; Zhou J; Aloysius N; Lim TT
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient approach to detect and track winter flush growth of litchi tree based on UAV remote sensing and semantic segmentation.
    Bai S; Liang J; Long T; Liang C; Zhou J; Ge W; Huang B; Lan Y; Zhao J; Long Y
    Front Plant Sci; 2023; 14():1307492. PubMed ID: 38098788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat.
    Singh D; Wang X; Kumar U; Gao L; Noor M; Imtiaz M; Singh RP; Poland J
    Front Plant Sci; 2019; 10():394. PubMed ID: 31019521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of winter wheat leaf area index from UAV multispectral images: classical vs. deep learning approaches.
    Zu J; Yang H; Wang J; Cai W; Yang Y
    Front Plant Sci; 2024; 15():1367828. PubMed ID: 38550285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating how lodging affects maize yield estimation based on UAV observations.
    Liu Y; Nie C; Zhang Z; Wang Z; Ming B; Xue J; Yang H; Xu H; Meng L; Cui N; Wu W; Jin X
    Front Plant Sci; 2022; 13():979103. PubMed ID: 36733603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Detection of Wheat Ears in Orthophotos From Unmanned Aerial Vehicles in Fields Based on YOLOX.
    Zhaosheng Y; Tao L; Tianle Y; Chengxin J; Chengming S
    Front Plant Sci; 2022; 13():851245. PubMed ID: 35574098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of soybean yield parameters under lodging conditions using RGB information from unmanned aerial vehicles.
    Bai D; Li D; Zhao C; Wang Z; Shao M; Guo B; Liu Y; Wang Q; Li J; Guo S; Wang R; Li YH; Qiu LJ; Jin X
    Front Plant Sci; 2022; 13():1012293. PubMed ID: 36589058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the lodging resistance of winter wheat from 1950s to the 2020s in Henan Province of China.
    Wang Y; Pan Y; Zhao F; Meng X; Li Q; Huang Y; Ye Y
    BMC Plant Biol; 2023 Sep; 23(1):442. PubMed ID: 37726651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image.
    Sun Q; Sun L; Shu M; Gu X; Yang G; Zhou L
    Plant Phenomics; 2019; 2019():5704154. PubMed ID: 33313529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (
    QuirĂ³s Vargas JJ; Zhang C; Smitchger JA; McGee RJ; Sankaran S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.