These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genome-Wide Association Mapping and Genomic Prediction of Anther Extrusion in CIMMYT Hybrid Wheat Breeding Program via Modeling Pedigree, Genomic Relationship, and Interaction With the Environment. Adhikari A; Basnet BR; Crossa J; Dreisigacker S; Camarillo F; Bhati PK; Jarquin D; Manes Y; Ibrahim AMH Front Genet; 2020; 11():586687. PubMed ID: 33363570 [TBL] [Abstract][Full Text] [Related]
3. Multi-omics-based prediction of hybrid performance in canola. Knoch D; Werner CR; Meyer RC; Riewe D; Abbadi A; Lücke S; Snowdon RJ; Altmann T Theor Appl Genet; 2021 Apr; 134(4):1147-1165. PubMed ID: 33523261 [TBL] [Abstract][Full Text] [Related]
4. Multi-Trait Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding Lines of Winter Wheat. Gill HS; Halder J; Zhang J; Brar NK; Rai TS; Hall C; Bernardo A; Amand PS; Bai G; Olson E; Ali S; Turnipseed B; Sehgal SK Front Plant Sci; 2021; 12():709545. PubMed ID: 34490011 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of Soil-Derived Covariates in Progeny Testing and Line Selection to Enhance Genomic Prediction Accuracy in Soybean Breeding. Canella Vieira C; Persa R; Chen P; Jarquin D Front Genet; 2022; 13():905824. PubMed ID: 36159995 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids. Liang Z; Gupta SK; Yeh CT; Zhang Y; Ngu DW; Kumar R; Patil HT; Mungra KD; Yadav DV; Rathore A; Srivastava RK; Gupta R; Yang J; Varshney RK; Schnable PS; Schnable JC G3 (Bethesda); 2018 Jul; 8(7):2513-2522. PubMed ID: 29794163 [TBL] [Abstract][Full Text] [Related]
7. Realized genomic selection across generations in a reciprocal recurrent selection breeding program of Simiqueli GF; Resende RT; Takahashi EK; de Sousa JE; Grattapaglia D Front Plant Sci; 2023; 14():1252504. PubMed ID: 37965018 [TBL] [Abstract][Full Text] [Related]
8. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
9. Use of simulation to optimize a sweet corn breeding program: implementing genomic selection and doubled haploid technology. Peixoto MA; Coelho IF; Leach KA; Lübberstedt T; Bhering LL; Resende MFR G3 (Bethesda); 2024 Aug; 14(8):. PubMed ID: 38869242 [TBL] [Abstract][Full Text] [Related]
10. Prediction of additive, epistatic, and dominance effects using models accounting for incomplete inbreeding in parental lines of hybrid rye and sugar beet. Kristensen PS; Sarup P; Fé D; Orabi J; Snell P; Ripa L; Mohlfeld M; Chu TT; Herrström J; Jahoor A; Jensen J Front Plant Sci; 2023; 14():1193433. PubMed ID: 38162304 [TBL] [Abstract][Full Text] [Related]
11. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers. Heidaritabar M; Wolc A; Arango J; Zeng J; Settar P; Fulton JE; O'Sullivan NP; Bastiaansen JW; Fernando RL; Garrick DJ; Dekkers JC J Anim Breed Genet; 2016 Oct; 133(5):334-46. PubMed ID: 27357473 [TBL] [Abstract][Full Text] [Related]
12. Genomic-enabled Prediction Accuracies Increased by Modeling Genotype × Environment Interaction in Durum Wheat. Sukumaran S; Jarquin D; Crossa J; Reynolds M Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025014 [TBL] [Abstract][Full Text] [Related]
13. Genomic Prediction of Additive and Non-additive Effects Using Genetic Markers and Pedigrees. de Almeida Filho JE; Guimarães JFR; Fonsceca E Silva F; Vilela de Resende MD; Muñoz P; Kirst M; de Resende Júnior MFR G3 (Bethesda); 2019 Aug; 9(8):2739-2748. PubMed ID: 31263059 [TBL] [Abstract][Full Text] [Related]
14. Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing. Ma J; Cao Y; Wang Y; Ding Y Front Plant Sci; 2022; 13():972791. PubMed ID: 36438102 [TBL] [Abstract][Full Text] [Related]
15. Increasing genomic prediction accuracy for unphenotyped full-sib families by modeling additive and dominance effects with large datasets in white spruce. Nadeau S; Beaulieu J; Gezan SA; Perron M; Bousquet J; Lenz PRN Front Plant Sci; 2023; 14():1137834. PubMed ID: 37035077 [TBL] [Abstract][Full Text] [Related]
16. Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize. Beyene Y; Gowda M; Pérez-Rodríguez P; Olsen M; Robbins KR; Burgueño J; Prasanna BM; Crossa J Front Plant Sci; 2021; 12():685488. PubMed ID: 34262585 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F Tan B; Grattapaglia D; Martins GS; Ferreira KZ; Sundberg B; Ingvarsson PK BMC Plant Biol; 2017 Jun; 17(1):110. PubMed ID: 28662679 [TBL] [Abstract][Full Text] [Related]
18. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Juliana P; Singh RP; Singh PK; Crossa J; Huerta-Espino J; Lan C; Bhavani S; Rutkoski JE; Poland JA; Bergstrom GC; Sorrells ME Theor Appl Genet; 2017 Jul; 130(7):1415-1430. PubMed ID: 28393303 [TBL] [Abstract][Full Text] [Related]