These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 38726373)

  • 1. Mimicking blood and lymphatic vasculatures using microfluidic systems.
    Hall E; Mendiola K; Lightsey NK; Hanjaya-Putra D
    Biomicrofluidics; 2024 May; 18(3):031502. PubMed ID: 38726373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling.
    Henderson AR; Choi H; Lee E
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32013154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Microcirculation-on-Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures.
    Luque-González MA; Reis RL; Kundu SC; Caballero D
    Adv Biosyst; 2020 Jul; 4(7):e2000045. PubMed ID: 32400118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Models of Blood and Lymphatic Vessels-Connecting Tissues and Immunity.
    Bogseth A; Ramirez A; Vaughan E; Maisel K
    Adv Biol (Weinh); 2023 May; 7(5):e2200041. PubMed ID: 35751460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lymphatic Vessel on a Chip with Capability for Exposure to Cyclic Fluidic Flow.
    Fathi P; Holland G; Pan D; Esch MB
    ACS Appl Bio Mater; 2020 Oct; 3(10):6697-6707. PubMed ID: 35019335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
    Wang YI; Abaci HE; Shuler ML
    Biotechnol Bioeng; 2017 Jan; 114(1):184-194. PubMed ID: 27399645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability.
    Sato M; Sasaki N; Ato M; Hirakawa S; Sato K; Sato K
    PLoS One; 2015; 10(9):e0137301. PubMed ID: 26332321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion.
    Pisano M; Triacca V; Barbee KA; Swartz MA
    Integr Biol (Camb); 2015 May; 7(5):525-33. PubMed ID: 25896438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.
    Sové RJ; Fraser GM; Goldman D; Ellis CG
    PLoS One; 2016; 11(11):e0166289. PubMed ID: 27829071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.
    Jun Kang Y; Ryu J; Lee SJ
    Biomicrofluidics; 2013; 7(4):44106. PubMed ID: 24404040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascularized microfluidic models of major organ structures and cancerous tissues.
    Rama Varma A; Fathi P
    Biomicrofluidics; 2023 Dec; 17(6):061502. PubMed ID: 38074952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of microscale culture technologies for studying lymphatic vessel biology.
    Chang CW; Seibel AJ; Song JW
    Microcirculation; 2019 Nov; 26(8):e12547. PubMed ID: 30946511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold.
    Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical responses of advecting cells in confined flow.
    Connolly S; Newport D; McGourty K
    Biomicrofluidics; 2020 May; 14(3):031501. PubMed ID: 32454924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature.
    Prabhakarpandian B; Shen MC; Pant K; Kiani MF
    Microvasc Res; 2011 Nov; 82(3):210-20. PubMed ID: 21763328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OOCHIP: Compartmentalized Microfluidic Perfusion System with Porous Barriers for Enhanced Cell-Cell Crosstalk in Organ-on-a-Chip.
    Ramadan Q; Gourikutty SBN; Zhang QX
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.