These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3872698)

  • 1. Characterization of sodium-dependent, high-affinity serotonin uptake in rat spinal cord synaptosomes.
    Stauderman KA; Jones DJ
    Brain Res; 1985 Mar; 330(1):11-20. PubMed ID: 3872698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that [3H]dopamine is taken up and released from nondopaminergic nerve terminals in the rat substantia nigra in vitro.
    Kelly E; Jenner P; Marsden CD
    J Neurochem; 1985 Jul; 45(1):137-44. PubMed ID: 3923157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: possible Ca(2+)-channel inhibition.
    Stauderman KA; Gandhi VC; Jones DJ
    Life Sci; 1992; 50(26):2125-38. PubMed ID: 1608295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of an autoreceptor modulating the release of [3H]5-hydroxytryptamine from a synaptosomal-rich spinal cord tissue preparation.
    Monroe PJ; Smith DJ
    J Neurochem; 1985 Dec; 45(6):1886-94. PubMed ID: 3877146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by tetanus toxin of sodium-dependent, high-affinity [3H]5-hydroxytryptamine uptake in rat synaptosomes.
    Inserte J; Najib A; Pelliccioni P; Gil C; Aguilera J
    Biochem Pharmacol; 1999 Jan; 57(1):111-20. PubMed ID: 9920291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonergic innervation of the lateral hypothalamus: evidence from synaptosomal uptake studies.
    Heym J; Gladfelter WE
    Brain Res Bull; 1982 Feb; 8(2):131-7. PubMed ID: 6978168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic serotonin receptors regulate [3H]serotonin release from rat spinal cord synaptosomes.
    Stauderman KA; Jones DJ
    Eur J Pharmacol; 1986 Jan; 120(1):107-9. PubMed ID: 3948909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of 5-hydroxytryptamine1B receptors in rat spinal cord via [125I]iodocyanopindolol binding and inhibition of [3H]-5-hydroxytryptamine release.
    Matsumoto I; Combs MR; Jones DJ
    J Pharmacol Exp Ther; 1992 Feb; 260(2):614-26. PubMed ID: 1738111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-dependent [3H]imipramine binding in rat hippocampus and its relationship to serotonin uptake.
    Hrdina PD
    Can J Physiol Pharmacol; 1987 Dec; 65(12):2422-7. PubMed ID: 2452679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The filum terminale of the frog spinal cord, a nontransformed glial preparation: II. Uptake of serotonin.
    Ritchie T; Glusman S; Haber B
    Neurochem Res; 1981 Apr; 6(4):441-52. PubMed ID: 6973701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of amino acid transmitter systems in spinal cords of chronic paraplegic dogs.
    McBride WJ; Hall PV; Chernet E; Patrick JT; Shapiro S
    J Neurochem; 1984 Jun; 42(6):1625-31. PubMed ID: 6144726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fluoxetine on basal and K(+)-induced tritium release from synaptosomes preloaded with [3H]serotonin.
    Gobbi M; Crespi D; Mennini T
    Life Sci; 1995; 56(10):785-91. PubMed ID: 7533873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of the relationship between the uptake site for 5-hydroxytryptamine and the high affinity binding site for [3H]imipramine. II. The role of sodium ions.
    Wood MD
    Neuropharmacology; 1987 Aug; 26(8):1081-5. PubMed ID: 2958719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a functional linkage between neurotransmitter uptake mechanisms and presynaptic receptors?
    Raiteri M; Bonanno G; Marchi M; Maura G
    J Pharmacol Exp Ther; 1984 Dec; 231(3):671-7. PubMed ID: 6150107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Hydroxytryptamine uptake and imipramine binding sites in neurotumor NCB-20 cells.
    Nakaki T; Roth BL; Chuang DM; Costa E
    J Neurochem; 1985 Sep; 45(3):920-5. PubMed ID: 3875688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity binding of [3H]desipramine to rat brain: a presynaptic marker for noradrenergic uptake sites.
    Rehavi M; Skolnick P; Brownstein MJ; Paul SM
    J Neurochem; 1982 Apr; 38(4):889-95. PubMed ID: 7062040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport.
    Zaczek R; Culp S; De Souza EB
    J Pharmacol Exp Ther; 1991 May; 257(2):830-5. PubMed ID: 1903446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord superfusates during stimulation of the rat medulla.
    Hammond DL; Tyce GM; Yaksh TL
    J Physiol; 1985 Feb; 359():151-62. PubMed ID: 2582112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrasynaptosomal sequestration of [3H]amphetamine and [3H]methylenedioxyamphetamine: characterization suggests the presence of a factor responsible for maintaining sequestration.
    Zaczek R; Culp S; De Souza EB
    J Neurochem; 1990 Jan; 54(1):195-204. PubMed ID: 1967142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of serotonin uptake in cultured pheochromocytoma cells. Comparison with norepinephrine uptake.
    Yoffe JR; Borchardt RT
    Mol Pharmacol; 1982 Mar; 21(2):368-73. PubMed ID: 7099140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.