These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38727022)

  • 1. Deoxygenative Hetero- and Carbofunctionalizations of Diarylketones.
    Sakihara M; Kurosawa MB; Watanabe M; Shimoyama S; Yamaguchi J
    J Org Chem; 2024 Jun; 89(11):8157-8167. PubMed ID: 38727022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified synthesis of multiply arylated alkanes by catalytic deoxygenative transformation of diarylketones.
    Kurosawa MB; Kato K; Muto K; Yamaguchi J
    Chem Sci; 2022 Sep; 13(36):10743-10751. PubMed ID: 36320688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Iino A; Ishikawa S; Aoki T; Terada M
    Chemistry; 2018 Oct; 24(57):15246-15253. PubMed ID: 30113749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxygenative Radical Boration of Inert Amides via a Combination of Relay and Cooperative Catalysis.
    Jiang F; Li J; Wang X
    Chemistry; 2023 Jun; 29(35):e202301199. PubMed ID: 37074233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Terada M
    Chemistry; 2022 Aug; 28(45):e202201198. PubMed ID: 35621328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raising the pKa limit of "soft" nucleophiles in palladium-catalyzed allylic substitutions: application of diarylmethane pronucleophiles.
    Sha SC; Zhang J; Carroll PJ; Walsh PJ
    J Am Chem Soc; 2013 Nov; 135(46):17602-9. PubMed ID: 24147620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach.
    Kaur R; Singh RP
    J Org Chem; 2023 Aug; 88(15):10325-10338. PubMed ID: 37460945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merging Electron Transfer with 1,2-Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters.
    Jiao J; Wang X
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):17088-17093. PubMed ID: 33988285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BippyPhos: a single ligand with unprecedented scope in the Buchwald-Hartwig amination of (hetero)aryl chlorides.
    Crawford SM; Lavery CB; Stradiotto M
    Chemistry; 2013 Dec; 19(49):16760-71. PubMed ID: 24281816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxygenative hydroboration of carboxamides: a versatile and selective synthetic approach to amines.
    Khalimon AY
    Dalton Trans; 2021 Dec; 50(47):17455-17466. PubMed ID: 34787155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Deoxygenative Functionalization of Secondary Amides with Vinylpyridines Enabled by a Triple Iridium-Photoredox-Chiral Phosphoric Acid System.
    Deng X; Jiang F; Wang X
    Org Lett; 2024 Mar; 26(12):2483-2488. PubMed ID: 38489756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and catalytic performance of nickel phosphinite pincer complexes in deoxygenative hydroboration of amides.
    Adilkhanova A; Frolova VF; Yessengazin A; Öztopçu Ö; Gudun KA; Segizbayev M; Matsokin NA; Dmitrienko A; Pilkington M; Khalimon AY
    Dalton Trans; 2023 Feb; 52(9):2872-2886. PubMed ID: 36762562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Organocatalytic 1,6-Conjugate Addition of
    Tan Q; Guo N; Yang L; Wang F; Feng X; Liu X
    J Org Chem; 2023 Jul; 88(13):9332-9342. PubMed ID: 37347936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of phenanthrene derivatives by intramolecular cyclization utilizing the [1,2]-phospha-Brook rearrangement catalyzed by a Brønsted base.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2015 Sep; 21(36):12577-80. PubMed ID: 26303440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicatalysis protocol enables direct and versatile enantioselective reductive transformations of secondary amides.
    Chen H; Wu ZZ; Shao DY; Huang PQ
    Sci Adv; 2022 Nov; 8(47):eade3431. PubMed ID: 36417504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-catalyzed allylic transposition of (allyloxy) iminodiazaphospholidines: a formal [3,3]-aza-phospha-oxa-Cope sigmatropic rearrangement for the stereoselective synthesis of allylic amines.
    Lee EE; Batey RA
    J Am Chem Soc; 2005 Oct; 127(42):14887-93. PubMed ID: 16231944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular cyclization of alkynyl α-ketoanilide utilizing [1,2]-phospha-Brook rearrangement catalyzed by phosphazene base.
    Kondoh A; Aoki T; Terada M
    Org Lett; 2014 Jul; 16(13):3528-31. PubMed ID: 24955761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Stereo-Induction Pattern in Pudovik Addition/Phospha-Brook Rearrangement Towards Chiral Trisubstituted Allenes.
    Zheng JY; Wang F; Zhang Y; Zheng Z; Wu JH; Ren X; Su Z; Chen W; Wang T
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403707. PubMed ID: 38520267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2017 Feb; 23(12):2769-2773. PubMed ID: 27918634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brønsted Base-Catalyzed Transformation of α,β-Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety.
    Kondoh A; Tasato N; Aoki T; Terada M
    Org Lett; 2020 Jul; 22(13):5170-5175. PubMed ID: 32610917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.