BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38727113)

  • 1. Effects of hexagonal boron nitride on mechanical properties of bone cement (Polymethylmethacrylate).
    Perçin A; Yapar A; Tokgöz MA; Yaş S; Baymurat AC; Selek HY
    Jt Dis Relat Surg; 2024 Feb; 35(2):340-346. PubMed ID: 38727113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of barium concentration on the radiopacity and biomechanics of bone cement: experimental study.
    Makita M; Yamakado K; Nakatsuka A; Takaki H; Inaba T; Oshima F; Katayama H; Takeda K
    Radiat Med; 2008 Nov; 26(9):533-8. PubMed ID: 19030961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress relaxation modelling of polymethylmethacrylate bone cement.
    Eden OR; Lee AJ; Hooper RM
    Proc Inst Mech Eng H; 2002; 216(3):195-9. PubMed ID: 12137286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydroxyapatite on PMMA-HAp cement for biomedical applications.
    Montaño CJ; Campos TPR; Lemos BRS; Yoshida MI; Almeida NGS; Aguilar MTP; Lima CV
    Biomed Mater Eng; 2020; 31(3):191-201. PubMed ID: 32568169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elution and Biomechanical Properties of Meropenem-Loaded Bone Cement.
    Wang LH; Feng YD; Zhang XW; Jin L; Zhou FL; Xu GH
    Orthop Surg; 2021 Dec; 13(8):2417-2422. PubMed ID: 34734478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan].
    Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation.
    Tavakoli M; Bakhtiari SSE; Karbasi S
    Int J Biol Macromol; 2020 Apr; 149():783-793. PubMed ID: 32014476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JectOS® versus PMMA vancomycin-loaded cement: The biomechanical and antimicrobial properties.
    Singh VA; Wei CC; Haseeb A; Shanmugam R; Ju CS
    J Orthop Surg (Hong Kong); 2019; 27(1):2309499018822247. PubMed ID: 30798727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphotericin B delivery from bone cement increases with porosity but strength decreases.
    Kweon C; McLaren AC; Leon C; McLemore R
    Clin Orthop Relat Res; 2011 Nov; 469(11):3002-7. PubMed ID: 21638100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.
    Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW
    Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daptomycin-loaded polymethylmethacrylate bone cement for joint arthroplasty surgery.
    Hsu YM; Liao CH; Wei YH; Fang HW; Hou HH; Chen CC; Chang CH
    Artif Organs; 2014 Jun; 38(6):484-92. PubMed ID: 24571555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.