These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38727113)

  • 41. Influence of the Advanced One-Step Mixing System Under Non-Vacuum on the Mechanical Properties of Acrylic Bone Cement.
    Schommer JV; Chong AC; Erickson TD
    Iowa Orthop J; 2024; 44(1):63-68. PubMed ID: 38919359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanical properties of recovered PMMA bone cement: a preliminary study.
    Chaplin RP; Lee AJ; Hooper RM; Clarke M
    J Mater Sci Mater Med; 2006 Dec; 17(12):1433-48. PubMed ID: 17143776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate.
    Liu J; Shirosaki Y; Miyazaki T
    J Biomater Appl; 2015 Apr; 29(9):1296-303. PubMed ID: 25568169
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomechanical characteristics of cement/gelatin mixture for prevention of cement leakage in vertebral augmentation.
    Meng B; Qian M; Xia SX; Yang HL; Luo ZP
    Eur Spine J; 2013 Oct; 22(10):2249-55. PubMed ID: 23832385
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E
    J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical strength of antibiotic-loaded PMMA spacers in two-stage revision surgery.
    Lunz A; Knappe K; Omlor GW; Schonhoff M; Renkawitz T; Jaeger S
    BMC Musculoskelet Disord; 2022 Oct; 23(1):945. PubMed ID: 36309657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate.
    Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A
    J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty.
    Ajaxon I; Persson C
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomechanical evaluation of polymethyl methacrylate with the addition of various doses of cefazolin, vancomycin, gentamicin, and silver microparticles.
    Ficklin MG; Kunkel KA; Suber JT; Gerard PD; Kowaleski MP
    Vet Comp Orthop Traumatol; 2016 Sep; 29(5):394-401. PubMed ID: 27468765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid.
    Sa Y; Yang F; de Wijn JR; Wang Y; Wolke JG; Jansen JA
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():190-8. PubMed ID: 26838840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modification of PMMA vertebroplasty cement for reduced stiffness by addition of normal saline: a material properties evaluation.
    Schröder C; Nguyen M; Kraxenberger M; Chevalier Y; Melcher C; Wegener B; Birkenmaier C
    Eur Spine J; 2017 Dec; 26(12):3209-3215. PubMed ID: 27942939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement.
    Persson C; Baleani M; Guandalini L; Tigani D; Viceconti M
    Acta Orthop; 2006 Aug; 77(4):617-21. PubMed ID: 16929439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
    Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z
    Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluating acrylic and glass-ionomer cement strength using the biaxial flexure test.
    Higg WA; Lucksanasombool P; Higgs RJ; Swain MV
    Biomaterials; 2001 Jun; 22(12):1583-90. PubMed ID: 11374458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of mechanical strength of teicoplanin and ciprofloxacin impregnated bone cement on Day 1 and Day 15.
    Gölge UH; Oztemur Z; Parlak M; Tezeren G; Oztürk H; Bulut O
    Acta Orthop Traumatol Turc; 2014; 48(3):333-8. PubMed ID: 24901926
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Radius fracture repair using volumetrically expanding polyurethane bone cement.
    Boxberger JI; Adams DJ; Diaz-Doran V; Akkarapaka NB; Kolb ED
    J Hand Surg Am; 2011 Aug; 36(8):1294-302. PubMed ID: 21715102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction.
    Wang L; Yoon DM; Spicer PP; Henslee AM; Scott DW; Wong ME; Kasper FK; Mikos AG
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):813-25. PubMed ID: 23359449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The clinical significance of vacuum mixing bone cement.
    Geiger MH; Keating EM; Ritter MA; Ginther JA; Faris PM; Meding JB
    Clin Orthop Relat Res; 2001 Jan; (382):258-66. PubMed ID: 11153996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.