BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38727357)

  • 21. Optically transparent carbon nanotube film electrode for thin layer spectroelectrochemistry.
    Wang T; Zhao D; Alvarez N; Shanov VN; Heineman WR
    Anal Chem; 2015 Oct; 87(19):9687-95. PubMed ID: 26291731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerosol assisted fabrication of carbon nanotube/zinc oxide arrays for a field emission device.
    Byeon JH; Kim JW
    J Colloid Interface Sci; 2013 Mar; 393():397-401. PubMed ID: 23295031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers.
    Luais E; Boujtita M; Gohier A; Tailleur A; Casimirius S; Djouadi MA; Granier A; Tessier PY
    Nanotechnology; 2008 Oct; 19(43):435502. PubMed ID: 21832696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate.
    Szabó A; Kecsenovity E; Pápa Z; Gyulavári T; Németh K; Horvath E; Hernadi K
    Sci Rep; 2017 Aug; 7(1):9557. PubMed ID: 28842644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary assisted deposition of carbon nanotube film for strain sensing.
    Li Z; Xue X; Lin F; Wang Y; Ward K; Fu J
    Appl Phys Lett; 2017 Oct; 111(17):173105. PubMed ID: 30405247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thin multi-walled carbon nanotubes synthesized by rapid thermal chemical vapor deposition and their field emission properties.
    Chun KY; Jung SI; Choi HY; Kim JU; Lee CJ
    J Nanosci Nanotechnol; 2009 Mar; 9(3):2148-54. PubMed ID: 19435094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrically Conductive Hierarchical Carbon Nanotube Networks with Tunable Mechanical Response.
    Davis BF; Yan X; Muralidharan N; Oakes L; Pint CL; Maschmann MR
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28004-28011. PubMed ID: 27689747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.
    Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Field Emission from a Carbon Nanotube Array Coated with a Hexagonal Boron Nitride Thin Film.
    Yang X; Li Z; He F; Liu M; Bai B; Liu W; Qiu X; Zhou H; Li C; Dai Q
    Small; 2015 Aug; 11(30):3710-6. PubMed ID: 25914117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The variation of surface contact angles according to the diameter of carbon nanotubes.
    Choi EC; Choi WS; Hong B
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3805-9. PubMed ID: 19504923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes.
    Rakhi R; Sethupathi K; Ramaprabhu S
    Nanoscale Res Lett; 2007 Jun; 2(7):331-6. PubMed ID: 21798103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Patterned Vertically Aligned Carbon Nanotubes by PECVD Using Different Growth Techniques: A Review.
    Gangele A; Sharma CS; Pandey AK
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2256-273. PubMed ID: 29638196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Crystallinity on the Field Emission Characteristics of Carbon Nanotube Grown on W-Co Bimetallic Catalyst.
    Yao Q; Wu Y; Song G; Xu Z; Ke Y; Zhan R; Chen J; Zhang Y; Deng S
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the growth and microstructure of carbon nanotubes grown by thermal chemical vapor deposition.
    Handuja S; Srivastava P; Vankar V
    Nanoscale Res Lett; 2010 May; 5(7):1211-6. PubMed ID: 20596549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoimprint Lithography for Next-Generation Carbon Nanotube-Based Devices.
    Fialkova S; Yarmolenko S; Krishnaswamy A; Sankar J; Shanov V; Schulz MJ; Desai S
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.
    Nakashima Y; Ohno Y; Kishimoto S; Okochi M; Honda H; Mizutani T
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3805-9. PubMed ID: 20355371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field Emission Properties and Fabrication of CdS Nanotube Arrays.
    Qian X; Liu H; Guo Y; Zhu S; Song Y; Li Y
    Nanoscale Res Lett; 2009 May; 4(8):955-961. PubMed ID: 20596327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.
    Watanabe H; Ishii J; Ota K
    Nanotechnology; 2016 Aug; 27(33):335605. PubMed ID: 27389659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene/carbon nanotube hybrid-based transparent 2D optical array.
    Kim UJ; Lee IH; Bae JJ; Lee S; Han GH; Chae SJ; Güneş F; Choi JH; Baik CW; Kim SI; Kim JM; Lee YH
    Adv Mater; 2011 Sep; 23(33):3809-14. PubMed ID: 21769950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.