These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38727548)

  • 1. Inference of source signatures of merchant ships in shallow ocean environmentsa).
    Knobles DP; Neilsen TB; Hodgkiss WS; Goff JA
    J Acoust Soc Am; 2024 May; 155(5):3144-3155. PubMed ID: 38727548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature-based maximum entropy for geophysical properties of the seabeda).
    Knobles DP; Hodgkiss W; Chaytor J; Neilsen T; Lin YT
    J Acoust Soc Am; 2024 Jun; 155(6):3559-3567. PubMed ID: 38829153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of seabed on very low frequency sound recorded during passage of merchant ships on the New England shelf.
    Knobles DP; Wilson PS; Neilsen TB; Hodgkiss WS
    J Acoust Soc Am; 2021 May; 149(5):3294. PubMed ID: 34241096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum entropy inference of seabed properties using waveguide invariant features from surface ships.
    Knobles DP; Neilsen TB; Wilson PS; Hodgkiss WS; Bonnel J; Lin YT
    J Acoust Soc Am; 2022 May; 151(5):2885. PubMed ID: 35649902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep sediment heterogeneity inferred using very low-frequency features from merchant shipsa).
    Hopps-McDaniel AM; Neilsen TB; Knobles DP; Hodgkiss WS; Wilson PS; Sagers JD
    J Acoust Soc Am; 2024 Oct; 156(4):2265-2274. PubMed ID: 39377532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seabed acoustics of a sand ridge on the New Jersey continental shelf.
    Knobles DP; Wilson PS; Goff JA; Cho SE
    J Acoust Soc Am; 2008 Sep; 124(3):EL151-6. PubMed ID: 19045558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave speed and attenuation profiles in a stratified marine sediment: Geo-acoustic modeling of seabed layering using the viscous grain shearing theory.
    Buckingham MJ
    J Acoust Soc Am; 2020 Aug; 148(2):962. PubMed ID: 32873014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential inversion of modal data for sound attenuation in sediment at the New Jersey Shelf.
    Duan R; Chapman NR; Yang K; Ma Y
    J Acoust Soc Am; 2016 Jan; 139(1):70-84. PubMed ID: 26827006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of infauna, worm tubes, and shell hash on sediment acoustic variability and deviation from the viscous grain shearing model.
    Lee KM; Venegas GR; Ballard MS; Dorgan KM; Kiskaddon E; McNeese AR; Wilson PS
    J Acoust Soc Am; 2022 Oct; 152(4):2456. PubMed ID: 36319245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed narrow-band time-reversing array retrofocusing in a dynamic shallow ocean.
    Dungan MR; Dowling DR
    J Acoust Soc Am; 2000 Jun; 107(6):3101-12. PubMed ID: 10875356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of wind-driven ambient noise in a shallow water environment with a sandy seabed.
    Knobles DP; Joshi SM; Gaul RD; Graber HC; Williams NJ
    J Acoust Soc Am; 2008 Sep; 124(3):EL157-62. PubMed ID: 19045559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ sediment dispersion estimates in the presence of discrete layers and gradients.
    Holland CW; Dettmer J
    J Acoust Soc Am; 2013 Jan; 133(1):50-61. PubMed ID: 23297882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geoacoustic inversion using low frequency broadband acoustic measurements from L-shaped arrays in the Shallow Water 2006 Experiment.
    Wan L; Badiey M; Knobles DP
    J Acoust Soc Am; 2016 Oct; 140(4):2358. PubMed ID: 27794339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning location and seabed type from a moving mid-frequency source.
    Neilsen TB; Escobar-Amado CD; Acree MC; Hodgkiss WS; Van Komen DF; Knobles DP; Badiey M; Castro-Correa J
    J Acoust Soc Am; 2021 Jan; 149(1):692. PubMed ID: 33514137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the emergence rate of coherent wavefronts from ocean ambient noise correlations using spatio-temporal filters.
    Leroy C; Lani S; Sabra KG; Hodgkiss WS; Kuperman WA; Roux P
    J Acoust Soc Am; 2012 Aug; 132(2):883-93. PubMed ID: 22894211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seabed classification from merchant ship-radiated noise using a physics-based ensemble of deep learning algorithms.
    Escobar-Amado CD; Neilsen TB; Castro-Correa JA; Van Komen DF; Badiey M; Knobles DP; Hodgkiss WS
    J Acoust Soc Am; 2021 Aug; 150(2):1434. PubMed ID: 34470272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent processing of shipping noise for ocean monitoring.
    Lani SW; Sabra KG; Hodgkiss WS; Kuperman WA; Roux P
    J Acoust Soc Am; 2013 Feb; 133(2):EL108-13. PubMed ID: 23363189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blind deconvolution of shipping sources in an ocean waveguide.
    Byun SH; Verlinden CM; Sabra KG
    J Acoust Soc Am; 2017 Feb; 141(2):797. PubMed ID: 28253650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic interferometry for geoacoustic characterization in a soft-layered sediment environment.
    Ren QY; Hermand JP
    J Acoust Soc Am; 2013 Jan; 133(1):82-93. PubMed ID: 23297885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflected acoustic energy from geological layers during seismic reflection surveys.
    Douglass AS; Abadi S; Phrampus BJ; Wood WT
    J Acoust Soc Am; 2024 Jun; 155(6):3665-3677. PubMed ID: 38842409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.