These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 38727895)
1. Transcriptome analysis and functional validation reveal the novel role of LhCYCL in axillary bud development in hybrid Liriodendron. Wen S; Hu Q; Wang J; Li H Plant Mol Biol; 2024 May; 114(3):55. PubMed ID: 38727895 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome Profiles Reveal the Crucial Roles of Auxin and Cytokinin in the "Shoot Branching" of Lv X; Zhang M; Li X; Ye R; Wang X Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373177 [No Abstract] [Full Text] [Related]
3. Mutation of the cytosolic ribosomal protein-encoding RPS10B gene affects shoot meristematic function in Arabidopsis. Stirnberg P; Liu JP; Ward S; Kendall SL; Leyser O BMC Plant Biol; 2012 Sep; 12():160. PubMed ID: 22963533 [TBL] [Abstract][Full Text] [Related]
4. Liriodendron chinense LcMAX1 regulates primary root growth and shoot branching in Arabidopsis thaliana. Wen S; Tu Z; Wei L; Li H Plant Physiol Biochem; 2022 Nov; 190():1-10. PubMed ID: 36084353 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis reveals the key network of axillary bud outgrowth modulated by topping in citrus. Li YT; Liu DH; Luo Y; Abbas Khan M; Mahmood Alam S; Liu YZ Gene; 2024 Oct; 926():148623. PubMed ID: 38821328 [TBL] [Abstract][Full Text] [Related]
6. Trifoliate encodes an MYB transcription factor that modulates leaf and shoot architecture in tomato. Naz AA; Raman S; Martinez CC; Sinha NR; Schmitz G; Theres K Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2401-6. PubMed ID: 23341595 [TBL] [Abstract][Full Text] [Related]
7. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum. Dierck R; De Keyser E; De Riek J; Dhooghe E; Van Huylenbroeck J; Prinsen E; Van Der Straeten D PLoS One; 2016; 11(8):e0161732. PubMed ID: 27557329 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of Qu H; Liang S; Hu L; Yu L; Liang P; Hao Z; Peng Y; Yang J; Shi J; Chen J Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000074 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.). Shi J; Wang N; Zhou H; Xu Q; Yan G BMC Plant Biol; 2020 May; 20(1):228. PubMed ID: 32448205 [TBL] [Abstract][Full Text] [Related]
10. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas. Ni J; Gao C; Chen MS; Pan BZ; Ye K; Xu ZF Plant Cell Physiol; 2015 Aug; 56(8):1655-66. PubMed ID: 26076970 [TBL] [Abstract][Full Text] [Related]
11. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. van Rongen M; Bennett T; Ticchiarelli F; Leyser O PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619 [TBL] [Abstract][Full Text] [Related]
12. Transcription factor FveMYB117a inhibits axillary bud outgrowth by regulating cytokinin homeostasis in woodland strawberry. Han Y; Qu M; Liu Z; Kang C Plant Cell; 2024 May; 36(6):2427-2446. PubMed ID: 38547429 [TBL] [Abstract][Full Text] [Related]
13. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Braun N; de Saint Germain A; Pillot JP; Boutet-Mercey S; Dalmais M; Antoniadi I; Li X; Maia-Grondard A; Le Signor C; Bouteiller N; Luo D; Bendahmane A; Turnbull C; Rameau C Plant Physiol; 2012 Jan; 158(1):225-38. PubMed ID: 22045922 [TBL] [Abstract][Full Text] [Related]
14. Role of tomato BRANCHED1-like genes in the control of shoot branching. Martín-Trillo M; Grandío EG; Serra F; Marcel F; Rodríguez-Buey ML; Schmitz G; Theres K; Bendahmane A; Dopazo H; Cubas P Plant J; 2011 Aug; 67(4):701-14. PubMed ID: 21554455 [TBL] [Abstract][Full Text] [Related]
15. Decapitation Experiments Combined with the Transcriptome Analysis Reveal the Mechanism of High Temperature on Chrysanthemum Axillary Bud Formation. Yang Y; Ahmad S; Yang Q; Yuan C; Zhang Q Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575868 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic analysis implicates ABA signaling and carbon supply in the differential outgrowth of petunia axillary buds. Luo Z; Jones D; Philp-Wright S; Putterill J; Snowden KC BMC Plant Biol; 2023 Oct; 23(1):482. PubMed ID: 37814235 [TBL] [Abstract][Full Text] [Related]
17. The AGAMOUS-LIKE 16-GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber. Chen J; Liu L; Wang G; Chen G; Liu X; Li M; Han L; Song W; Wang S; Li C; Wang Z; Huang Y; Gu C; Yang Z; Zhou Z; Zhao J; Zhang X Plant Cell; 2024 Jul; 36(7):2689-2708. PubMed ID: 38581430 [TBL] [Abstract][Full Text] [Related]
18. Signal integration in the control of shoot branching. Domagalska MA; Leyser O Nat Rev Mol Cell Biol; 2011 Apr; 12(4):211-21. PubMed ID: 21427763 [TBL] [Abstract][Full Text] [Related]
19. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum ( Yuan C; Ahmad S; Cheng T; Wang J; Pan H; Zhao L; Zhang Q Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29843424 [TBL] [Abstract][Full Text] [Related]
20. The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. Yang Y; Nicolas M; Zhang J; Yu H; Guo D; Yuan R; Zhang T; Yang J; Cubas P; Qin G PLoS Genet; 2018 Mar; 14(3):e1007296. PubMed ID: 29570704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]