These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38728051)

  • 1. Systematic Assessment of Deep Learning-Based Predictors of Fragmentation Intensity Profiles.
    Hamaneh MB; Ogurtsov AY; Obolensky OI; Yu YK
    J Proteome Res; 2024 Jun; 23(6):1983-1999. PubMed ID: 38728051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.
    Gessulat S; Schmidt T; Zolg DP; Samaras P; Schnatbaum K; Zerweck J; Knaute T; Rechenberger J; Delanghe B; Huhmer A; Reimer U; Ehrlich HC; Aiche S; Kuster B; Wilhelm M
    Nat Methods; 2019 Jun; 16(6):509-518. PubMed ID: 31133760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.
    Zhou XX; Zeng WF; Chi H; Luo C; Liu C; Zhan J; He SM; Zhang Z
    Anal Chem; 2017 Dec; 89(23):12690-12697. PubMed ID: 29125736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
    Muth T; Renard BY
    Brief Bioinform; 2018 Sep; 19(5):954-970. PubMed ID: 28369237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics.
    Zeng WF; Zhou XX; Willems S; Ammar C; Wahle M; Bludau I; Voytik E; Strauss MT; Mann M
    Nat Commun; 2022 Nov; 13(1):7238. PubMed ID: 36433986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MS2PIP: a tool for MS/MS peak intensity prediction.
    Degroeve S; Martens L
    Bioinformatics; 2013 Dec; 29(24):3199-203. PubMed ID: 24078703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of Collision Energies in Proteomics Mass Spectrometry Experiments for Best Peptide Identification: Study of Mascot Score Energy Dependence Reveals Double Optimum.
    Révész Á; Rokob TA; Jeanne Dit Fouque D; Turiák L; Memboeuf A; Vékey K; Drahos L
    J Proteome Res; 2018 May; 17(5):1898-1906. PubMed ID: 29607649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-Assisted Analysis of Immunopeptidomics Data.
    Gabriel W; Picciani M; The M; Wilhelm M
    Methods Mol Biol; 2024; 2758():457-483. PubMed ID: 38549030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides.
    Gabriel W; The M; Zolg DP; Bayer FP; Shouman O; Lautenbacher L; Schnatbaum K; Zerweck J; Knaute T; Delanghe B; Huhmer A; Wenschuh H; Reimer U; Médard G; Kuster B; Wilhelm M
    Anal Chem; 2022 May; 94(20):7181-7190. PubMed ID: 35549156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF.
    Adams C; Gabriel W; Laukens K; Picciani M; Wilhelm M; Bittremieux W; Boonen K
    Nat Commun; 2024 May; 15(1):3956. PubMed ID: 38730277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Peptide-Spectrum Matching by Fragmentation Prediction Using Hidden Markov Models.
    Kirik U; Refsgaard JC; Jensen LJ
    J Proteome Res; 2019 Jun; 18(6):2385-2396. PubMed ID: 31074280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the accuracy and limits of peptide fragmentation spectrum prediction.
    Li S; Arnold RJ; Tang H; Radivojac P
    Anal Chem; 2011 Feb; 83(3):790-6. PubMed ID: 21175207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of spectral library prediction for parallel reaction monitoring of viral peptides.
    Grossegesse M; Nitsche A; Schaade L; Doellinger J
    Proteomics; 2021 Apr; 21(7-8):e2000226. PubMed ID: 33615696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Prediction of y Ions in Beam-Type Collision-Induced Dissociation Using Deep Learning.
    Shin H; Park Y; Ahn K; Kim S
    Anal Chem; 2022 Jun; 94(22):7752-7758. PubMed ID: 35609248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics.
    Wilhelm M; Zolg DP; Graber M; Gessulat S; Schmidt T; Schnatbaum K; Schwencke-Westphal C; Seifert P; de Andrade Krätzig N; Zerweck J; Knaute T; Bräunlein E; Samaras P; Lautenbacher L; Klaeger S; Wenschuh H; Rad R; Delanghe B; Huhmer A; Carr SA; Clauser KR; Krackhardt AM; Reimer U; Kuster B
    Nat Commun; 2021 Jun; 12(1):3346. PubMed ID: 34099720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting intensity ranks of peptide fragment ions.
    Frank AM
    J Proteome Res; 2009 May; 8(5):2226-40. PubMed ID: 19256476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OpenMS-Simulator: an open-source software for theoretical tandem mass spectrum prediction.
    Wang Y; Yang F; Wu P; Bu D; Sun S
    BMC Bioinformatics; 2015 Apr; 16():110. PubMed ID: 25887925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Updated MS²PIP web server delivers fast and accurate MS² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques.
    Gabriels R; Martens L; Degroeve S
    Nucleic Acids Res; 2019 Jul; 47(W1):W295-W299. PubMed ID: 31028400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.