BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38728258)

  • 1. Mechanistic Insights Behind the Self-Assembly of Human Insulin under the Influence of Surface-Engineered Gold Nanoparticles.
    Flint Z; Grannemann H; Baffour K; Koti N; Taylor E; Grier E; Sutton C; Johnson D; Dandawate P; Patel R; Santra S; Banerjee T
    ACS Chem Neurosci; 2024 Jun; 15(11):2359-2371. PubMed ID: 38728258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin adsorption onto zinc oxide nanoparticle mediates conformational rearrangement into amyloid-prone structure with enhanced cytotoxic propensity.
    Asthana S; Hazarika Z; Nayak PS; Roy J; Jha AN; Mallick B; Jha S
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):153-166. PubMed ID: 30315849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors.
    Hsieh S; Chang CW; Chou HH
    Colloids Surf B Biointerfaces; 2013 Dec; 112():525-9. PubMed ID: 24060166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid self-association of highly amyloidogenic H-fragments of insulin: Experiment and molecular dynamics simulations.
    Dec R; Koliński M; Kouza M; Dzwolak W
    Int J Biol Macromol; 2020 May; 150():894-903. PubMed ID: 32070740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation.
    John T; Adler J; Elsner C; Petzold J; Krueger M; Martin LL; Huster D; Risselada HJ; Abel B
    J Colloid Interface Sci; 2022 Sep; 622():804-818. PubMed ID: 35569410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles With a Specific Size and Surface Charge Promote Disruption of the Secondary Structure and Amyloid-Like Fibrillation of Human Insulin Under Physiological Conditions.
    Sukhanova A; Poly S; Bozrova S; Lambert É; Ewald M; Karaulov A; Molinari M; Nabiev I
    Front Chem; 2019; 7():480. PubMed ID: 31417892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomeric Effect of Nano-Inhibitors on Aβ
    Li J; Gao G; Tang X; Yu M; He M; Sun T
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4894-4904. PubMed ID: 33486955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopolymer-coated gold nanoparticles inhibit human insulin amyloid fibrillation.
    Meesaragandla B; Karanth S; Janke U; Delcea M
    Sci Rep; 2020 May; 10(1):7862. PubMed ID: 32398693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation.
    Grigolato F; Colombo C; Ferrari R; Rezabkova L; Arosio P
    ACS Nano; 2017 Nov; 11(11):11358-11367. PubMed ID: 29045787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy.
    Jansen R; Dzwolak W; Winter R
    Biophys J; 2005 Feb; 88(2):1344-53. PubMed ID: 15574704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-directed self-assembly and growth of insulin amyloid fibrils.
    Ha C; Park CB
    Biotechnol Bioeng; 2005 Jun; 90(7):848-55. PubMed ID: 15803463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis.
    Javed I; Sun Y; Adamcik J; Wang B; Kakinen A; Pilkington EH; Ding F; Mezzenga R; Davis TP; Ke PC
    Biomacromolecules; 2017 Dec; 18(12):4316-4322. PubMed ID: 29095600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary nucleation and accessible surface in insulin amyloid fibril formation.
    Foderà V; Librizzi F; Groenning M; van de Weert M; Leone M
    J Phys Chem B; 2008 Mar; 112(12):3853-8. PubMed ID: 18311965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy.
    Loksztejn A; Dzwolak W
    J Mol Biol; 2010 Jan; 395(3):643-55. PubMed ID: 19891974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical ordering of amyloid fibrils on the mica surface.
    Zhou X; Zhang Y; Zhang F; Pillai S; Liu J; Li R; Dai B; Li B; Zhang Y
    Nanoscale; 2013 Jun; 5(11):4816-22. PubMed ID: 23613010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation of polymer-grafted nanoparticles in good solvents: a hierarchical modeling method.
    Cheng L; Cao D
    J Chem Phys; 2011 Sep; 135(12):124703. PubMed ID: 21974548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of Gold Nanorods on HSA Amyloid Fibrils to Develop a Conductive Nanoscaffold for Potential Biomedical and Biosensing Applications.
    Taheri RA; Akhtari Y; Tohidi Moghadam T; Ranjbar B
    Sci Rep; 2018 Jun; 8(1):9333. PubMed ID: 29921839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.