These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38728580)

  • 21. Development and Utilization of a Model System to Evaluate the Potential of Surface Coatings for Protecting Grapes from Volatile Phenols Implicated in Smoke Taint.
    Culbert JA; Krstic MP; Herderich MJ
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smoked-Derived Volatile Phenol Analysis in Wine by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry.
    Yang R; Alcazar-Magana A; Qian YL; Qian MC
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes.
    Modesti M; Szeto C; Ristic R; Jiang W; Culbert J; Bindon K; Catelli C; Mencarelli F; Tonutti P; Wilkinson K
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33806831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the Potential for Smoke from Stubble Burning to Taint Grapes and Wine.
    Wilkinson K; Ristic R; McNamara I; Loveys B; Jiang W; Krstic M
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of phenol composition on the sensory profile of smoke affected wines.
    Kelly D; Zerihun A
    Molecules; 2015 May; 20(6):9536-49. PubMed ID: 26016545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Techniques for Mitigating the Effects of Smoke Taint While Maintaining Quality in Wine Production: A Review.
    Mirabelli-Montan YA; Marangon M; Graça A; Mayr Marangon CM; Wilkinson KL
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thinking Inside the Box: A Novel Approach to Smoke Taint Mitigation Trials.
    Szeto C; Ristic R; Wilkinson K
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of glycosidases addition on selected monoterpenes contents in musts and white wines from two grape varieties grown in Poland.
    Dziadas M; Jeleń H
    Acta Sci Pol Technol Aliment; 2011; 10(1):7-17. PubMed ID: 22232525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Functional Spray Coatings for Mitigating the Uptake of Volatile Phenols by Pinot Noir Wine Grapes via Blocking, Absorption, and/or Adsorption.
    Tran TT; Jung J; Garcia L; Deshields J; Cerrato C; Penner MH; Tomasino E; Levin A; Zhao Y
    J Agric Food Chem; 2023 Dec; 71(50):20222-20230. PubMed ID: 38054467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes.
    Barnaba C; Dellacassa E; Nicolini G; Giacomelli M; Roman Villegas T; Nardin T; Larcher R
    Food Res Int; 2017 Aug; 98():20-33. PubMed ID: 28610729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: its application potential in wine aroma enhancement.
    Hu K; Zhu XL; Mu H; Ma Y; Ullah N; Tao YS
    Lett Appl Microbiol; 2016 Feb; 62(2):169-76. PubMed ID: 26606736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines.
    Mayr CM; Parker M; Baldock GA; Black CA; Pardon KH; Williamson PO; Herderich MJ; Francis IL
    J Agric Food Chem; 2014 Mar; 62(11):2327-36. PubMed ID: 24617920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odour-active constituents of Fiano wine.
    Ugliano M; Moio L
    Anal Chim Acta; 2008 Jul; 621(1):79-85. PubMed ID: 18573373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of fruit maturity at harvest on the intensity of smoke taint in wine.
    Ristic R; Boss PK; Wilkinson KL
    Molecules; 2015 May; 20(5):8913-27. PubMed ID: 25993420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars.
    Ristic R; van der Hulst L; Capone DL; Wilkinson KL
    J Agric Food Chem; 2017 May; 65(20):4146-4152. PubMed ID: 28464603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid headspace solid-phase microextraction sheets with direct analysis in real time mass spectrometry (SPMESH-DART-MS) of derivatized volatile phenols in grape juices and wines.
    Bates TL; Sacks GL
    Anal Chim Acta; 2023 Sep; 1275():341577. PubMed ID: 37524464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review.
    Maicas S; Mateo JJ
    Appl Microbiol Biotechnol; 2005 May; 67(3):322-35. PubMed ID: 15635463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compositional Changes in Smoke-Affected Grape Juice as a Consequence of Activated Carbon Treatment and the Impact on Phenolic Compounds and Smoke Flavor in Wine.
    Culbert JA; Jiang W; Bilogrevic E; Likos D; Francis IL; Krstic MP; Herderich MJ
    J Agric Food Chem; 2021 Sep; 69(35):10246-10259. PubMed ID: 34428045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of
    Thongekkaew J; Fujii T; Masaki K; Koyama K
    Nat Prod Res; 2019 Dec; 33(24):3563-3567. PubMed ID: 29873255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Appraising California Zinfandel Exposure to Wildfire Smoke Using Natural Product Phenolic Diglycoside Biomarkers.
    Crews P; Dorenbach P; Amberchan G
    J Agric Food Chem; 2022 Sep; 70(37):11738-11748. PubMed ID: 36075021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.