These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38728589)

  • 1. Atomic-Scale Interface for Pt Nanoparticles on SrTiO
    Chen Y; Das A; Duplessis ID; Keane DT; Bedzyk MJ
    ACS Appl Mater Interfaces; 2024 May; 16(20):26862-26869. PubMed ID: 38728589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Site-Specific Surface Valence-Band Structure from X-Ray Standing-Wave Excited Photoemission.
    Chen Y; Jones LO; Lee TL; Das A; Mosquera MA; Keane DT; Schatz GC; Bedzyk MJ
    Phys Rev Lett; 2022 May; 128(20):206801. PubMed ID: 35657902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of atomic layer deposited (ALD) tungsten monolayers on alpha-TiO2(110) by X-ray standing wave Fourier inversion.
    Kim CY; Elam JW; Pellin MJ; Goswami DK; Christensen ST; Hersam MC; Stair PC; Bedzyk MJ
    J Phys Chem B; 2006 Jun; 110(25):12616-20. PubMed ID: 16800592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-Scale Structure of Chemically Distinct Surface Oxygens in Redox Reactions.
    Das A; Park H; Chen Y; Choudhury D; Lee TL; Elam JW; Zapol P; Bedzyk MJ
    J Am Chem Soc; 2021 Nov; 143(43):17937-17941. PubMed ID: 34672550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic imaging of oxide-supported metallic nanocrystals.
    Feng Z; Kazimirov A; Bedzyk MJ
    ACS Nano; 2011 Dec; 5(12):9755-60. PubMed ID: 22032686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-Scale View of Redox Induced Changes for Monolayer MoO
    Das A; Jones LO; Chen Y; Choudhury D; Keane DT; Elam JW; Schatz GC; Bedzyk MJ
    J Phys Chem Lett; 2022 Jun; ():5304-5309. PubMed ID: 35675154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production.
    Chen Y; Ji S; Sun W; Lei Y; Wang Q; Li A; Chen W; Zhou G; Zhang Z; Wang Y; Zheng L; Zhang Q; Gu L; Han X; Wang D; Li Y
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1295-1301. PubMed ID: 31654544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful application of spatial difference technique to electron energy-loss spectroscopy studies of Mo/SrTiO3 interfaces.
    Gao M; Scheu C; Tchernychova E; Rühle M
    J Microsc; 2003 Apr; 210(Pt 1):94-101. PubMed ID: 12694422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and growth process of atomic layer deposition platinum nanoparticles on strontium titanate nanocuboids.
    Wang C; Hu L; Poeppelmeier K; Stair PC; Marks L
    Nanotechnology; 2017 May; 28(18):185704. PubMed ID: 28397706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic, and photothermocatalytic oxidation of toluene on Pt/SrTiO
    Yang X; Liu S; Li J; Chen J; Rui Z
    Chemosphere; 2020 Jun; 249():126096. PubMed ID: 32058131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces.
    Chang TY; Tanaka Y; Ishikawa R; Toyoura K; Matsunaga K; Ikuhara Y; Shibata N
    Nano Lett; 2014 Jan; 14(1):134-8. PubMed ID: 24351061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde.
    Chiu TC; Lee HY; Li PH; Chao JH; Lin CH
    Nanotechnology; 2013 Mar; 24(11):115601. PubMed ID: 23448895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition.
    Christensen ST; Elam JW; Rabuffetti FA; Ma Q; Weigand SJ; Lee B; Seifert S; Stair PC; Poeppelmeier KR; Hersam MC; Bedzyk MJ
    Small; 2009 Mar; 5(6):750-7. PubMed ID: 19306465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.
    Sarkar A; Kerr JB; Cairns EJ
    Chemphyschem; 2013 Jul; 14(10):2132-42. PubMed ID: 23505224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO
    Grillo F; Van Bui H; La Zara D; Aarnink AAI; Kovalgin AY; Kooyman P; Kreutzer MT; van Ommen JR
    Small; 2018 Jun; 14(23):e1800765. PubMed ID: 29745008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal and interfacial structure of membranes studied using X-ray standing waves.
    Caffrey M; Wang J
    Faraday Discuss; 1992; (94):283-93. PubMed ID: 1339495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.
    Gao W; Sivaramakrishnan S; Wen J; Zuo JM
    Nano Lett; 2015 Apr; 15(4):2548-54. PubMed ID: 25761226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition.
    Dai Y; Chen S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):823-9. PubMed ID: 25513894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.