BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38728691)

  • 1. Cutaneous Evaporative Water Loss in Lizards Changes Immediately with Temperature.
    Davis CG; Weaver SJ; Taylor EN
    Ecol Evol Physiol; 2024; 97(2):118-128. PubMed ID: 38728691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration and evaporative water loss of lizards change in response to temperature and humidity acclimation.
    Weaver SJ; McIntyre T; van Rossum T; Telemeco RS; Taylor EN
    J Exp Biol; 2023 Oct; 226(20):. PubMed ID: 37767755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning of evaporative water loss in white-winged doves: plasticity in response to short-term thermal acclimation.
    McKechnie AE; Wolf BO
    J Exp Biol; 2004 Jan; 207(Pt 2):203-10. PubMed ID: 14668305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia.
    Webster MD; King JR
    J Comp Physiol B; 1987; 157(2):253-60. PubMed ID: 3571575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of evaporative water loss into respiratory and cutaneous pathways in Wahlberg's epauletted fruit bats (Epomophorus wahlbergi).
    Minnaar IA; Bennett NC; Chimimba CT; McKechnie AE
    Physiol Biochem Zool; 2014; 87(3):475-85. PubMed ID: 24769711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporative cooling via panting and its metabolic and water balance costs for lizards in the American Southwest.
    Loughran CL; Wolf BO
    J Exp Biol; 2023 Feb; 226(3):. PubMed ID: 36651236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydric physiology and ecology of a federally endangered desert lizard.
    Weaver SJ; Axsom IJ; Peria L; McIntyre T; Chung J; Telemeco RS; Westphal MF; Taylor EN
    Conserv Physiol; 2024; 12(1):coae019. PubMed ID: 38715929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation and repeatability of cutaneous water loss and skin resistance in relation to temperature and diel variation in the lizard Sceloporus consobrinus.
    Oufiero CE; Van Sant MJ
    J Comp Physiol B; 2018 Jul; 188(4):671-681. PubMed ID: 29619510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloacal evaporative cooling: a previously undescribed means of increasing evaporative water loss at higher temperatures in a desert ectotherm, the Gila monster Heloderma suspectum.
    DeNardo DF; Zubal TE; Hoffman TC
    J Exp Biol; 2004 Feb; 207(Pt 6):945-53. PubMed ID: 14766953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of water vapor density on cutaneous resistance to evaporative water loss and body temperature in green tree frogs (Hyla cinerea).
    Wygoda ML; Kersten CA
    Physiol Biochem Zool; 2013; 86(5):559-66. PubMed ID: 23995486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative methods analysis on rates of cutaneous evaporative water loss (CEWL) in cattle.
    Castro PA; Campos Maia AS; de França Carvalho Fonsêca V; Bernado Moura GA; Carol de Melo Costa C; Nascimento ST; Simão BR; Ruggieri AC; Gomes da Silva R
    J Therm Biol; 2021 Apr; 97():102879. PubMed ID: 33863443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.
    Muñoz-Garcia A; Larraín P; Ben-Hamo M; Cruz-Neto A; Williams JB; Pinshow B; Korine C
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():156-165. PubMed ID: 26459985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoregulatory consequences of salt loading in the lizard Pogona vitticeps.
    Scarpellini Cda S; Bícego KC; Tattersall GJ
    J Exp Biol; 2015 Apr; 218(Pt 8):1166-74. PubMed ID: 25714566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.
    Gerson AR; Smith EK; Smit B; McKechnie AE; Wolf BO
    Physiol Biochem Zool; 2014; 87(6):782-95. PubMed ID: 25461643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents.
    Talbot WA; McWhorter TJ; Gerson AR; McKechnie AE; Wolf BO
    J Exp Biol; 2017 Oct; 220(Pt 19):3488-3498. PubMed ID: 28760832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological differences in preferred temperatures and evaporative water loss rates in two sympatric lacertid species.
    Sannolo M; Barroso FM; Carretero MA
    Zoology (Jena); 2018 Feb; 126():58-64. PubMed ID: 29306684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferred temperature correlates with evaporative water loss in hylid frogs from northern Australia.
    Tracy CR; Christian KA
    Physiol Biochem Zool; 2005; 78(5):839-46. PubMed ID: 16082612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoregulatory role of insensible evaporative water loss constancy in a heterothermic marsupial.
    Cooper CE; Withers PC
    Biol Lett; 2017 Nov; 13(11):. PubMed ID: 29142044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lizard Gut Microbiome Changes with Temperature and Is Associated with Heat Tolerance.
    Moeller AH; Ivey K; Cornwall MB; Herr K; Rede J; Taylor EN; Gunderson AR
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines.
    Whitfield MC; Smit B; McKechnie AE; Wolf BO
    J Exp Biol; 2015 Jun; 218(Pt 11):1705-14. PubMed ID: 26041032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.