These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38728785)
1. Assessment of in-situ monitoring and tracking the vertical migration of cyanobacterial blooms using LISST-HAB. Zhang Y; Yang T; Zhang Y; Xu G; Lorke A; Pan M; He F; Li Q; Xiao B; Wu X Water Res; 2024 Jun; 257():121693. PubMed ID: 38728785 [TBL] [Abstract][Full Text] [Related]
2. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related]
3. Continuous and Synoptic Assessment of Indian Inland Waters for Harmful Algae Blooms. Maniyar CB; Kumar A; Mishra DR Harmful Algae; 2022 Jan; 111():102160. PubMed ID: 35016766 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Chaffin JD; Kane DD; Stanislawczyk K; Parker EM Environ Sci Pollut Res Int; 2018 Sep; 25(25):25175-25189. PubMed ID: 29943249 [TBL] [Abstract][Full Text] [Related]
5. Predicting cyanobacterial biovolume from water temperature and conductivity using a Bayesian compound Poisson-Gamma model. Haakonsson S; Rodríguez MA; Carballo C; Pérez MDC; Arocena R; Bonilla S Water Res; 2020 Jun; 176():115710. PubMed ID: 32251942 [TBL] [Abstract][Full Text] [Related]
6. Acoustic scattering by gas-bearing cyanobacterium Microcystis: Modeling and in situ biomass assessment. Chu D; Ostrovsky I; Homma H Sci Total Environ; 2021 Nov; 794():148573. PubMed ID: 34225151 [TBL] [Abstract][Full Text] [Related]
7. Employing hybrid deep learning for near-real-time forecasts of sensor-based algal parameters in a Microcystis bloom-dominated lake. Wang L; Shan K; Yi Y; Yang H; Zhang Y; Xie M; Zhou Q; Shang M Sci Total Environ; 2024 Apr; 922():171009. PubMed ID: 38402991 [TBL] [Abstract][Full Text] [Related]
8. Sensor-based detection of algal blooms for public health advisories and long-term monitoring. Rome M; Beighley RE; Faber T Sci Total Environ; 2021 May; 767():144984. PubMed ID: 33636761 [TBL] [Abstract][Full Text] [Related]
9. [Analysis of Influencing Factors of Chlorophyll-a in Lake Taihu Based on Bayesian Network]. Liu J; He YC; Deng JM; Tang XM Huan Jing Ke Xue; 2023 May; 44(5):2592-2600. PubMed ID: 37177933 [TBL] [Abstract][Full Text] [Related]
10. Rapid in situ assessment of high-resolution spatial and temporal distribution of cyanobacterial blooms using fishery echosounder. Godlewska M; Balk H; Izydorczyk K; Kaczkowski Z; Mankiewicz-Boczek J; Ye S Sci Total Environ; 2023 Jan; 857(Pt 2):159492. PubMed ID: 36257442 [TBL] [Abstract][Full Text] [Related]
11. [Analysis of the Spatiotemporal Distribution of Algal Blooms and Its Driving Factors in Chaohu Lake Based on Multi-source Datasets]. Jin XL; Deng XL; Dai R; Xu QQ; Wu Y; Fan YX Huan Jing Ke Xue; 2024 May; 45(5):2694-2706. PubMed ID: 38629533 [TBL] [Abstract][Full Text] [Related]
12. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
13. CyanoTRACKER: A cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms. Mishra DR; Kumar A; Ramaswamy L; Boddula VK; Das MC; Page BP; Weber SJ Harmful Algae; 2020 Jun; 96():101828. PubMed ID: 32560841 [TBL] [Abstract][Full Text] [Related]
14. The Special and General Mechanism of Cyanobacterial Harmful Algal Blooms. Cheng W; Hwang S; Guo Q; Qian L; Liu W; Yu Y; Liu L; Tao Y; Cao H Microorganisms; 2023 Apr; 11(4):. PubMed ID: 37110410 [TBL] [Abstract][Full Text] [Related]
15. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs. Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321 [TBL] [Abstract][Full Text] [Related]
16. Environmental drivers behind the exceptional increase in cyanobacterial blooms in Okavango Delta, Botswana. Veerman J; Mishra DR; Kumar A; Karidozo M Harmful Algae; 2024 Aug; 137():102677. PubMed ID: 39003028 [TBL] [Abstract][Full Text] [Related]
17. Cyanobacterial Blooms Are Not a Result of Positive Selection by Freshwater Eutrophication. Yu Y; Cheng W; Chen X; Guo Q; Cao H Microbiol Spectr; 2022 Dec; 10(6):e0319422. PubMed ID: 36445094 [TBL] [Abstract][Full Text] [Related]
18. Investigating the sub-daily dynamics of cyanobacterial blooms by coupling high-frequency time-series remote sensing with hydro-ecological modelling. Li H; Qin C; He W; Sun F; Du P J Environ Manage; 2022 Sep; 317():115311. PubMed ID: 35751230 [TBL] [Abstract][Full Text] [Related]
19. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA. Isenstein EM; Trescott A; Park MH Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929 [TBL] [Abstract][Full Text] [Related]
20. Persistent Cyanobacteria Blooms in Artificial Water Bodies-An Effect of Environmental Conditions or the Result of Anthropogenic Change. Nowicka-Krawczyk P; Żelazna-Wieczorek J; Skrobek I; Ziułkiewicz M; Adamski M; Kaminski A; Żmudzki P Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]