These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38729119)
1. MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study. Lan T; Kuang S; Liang P; Ning C; Li Q; Wang L; Wang Y; Lin Z; Hu H; Yang L; Li J; Liu J; Li Y; Wu F; Chai H; Song X; Huang Y; Duan X; Zeng D; Li J; Cao H Int J Surg; 2024 Aug; 110(8):4648-4659. PubMed ID: 38729119 [TBL] [Abstract][Full Text] [Related]
2. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma. Chen Z; Yu Y; Liu S; Du W; Hu L; Wang C; Li J; Liu J; Zhang W; Peng X Clin Oral Investig; 2023 Dec; 28(1):39. PubMed ID: 38151672 [TBL] [Abstract][Full Text] [Related]
3. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Based Radiomic HPV Phenotyping of Oropharyngeal SCC: A Feasibility Study Using MRI. Sohn B; Choi YS; Ahn SS; Kim H; Han K; Lee SK; Kim J Laryngoscope; 2021 Mar; 131(3):E851-E856. PubMed ID: 33070337 [TBL] [Abstract][Full Text] [Related]
5. A CT-based integrated model for preoperative prediction of occult lymph node metastasis in early tongue cancer. Han W; Wang Y; Li T; Dong Y; Dang Y; He L; Xu L; Zhou Y; Li Y; Wang X PeerJ; 2024; 12():e17254. PubMed ID: 38685941 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma. Zhang XF; Wu HY; Liang XW; Chen JL; Li J; Zhang S; Liu Z BMC Womens Health; 2024 Mar; 24(1):182. PubMed ID: 38504245 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images. Jin X; Ai Y; Zhang J; Zhu H; Jin J; Teng Y; Chen B; Xie C Eur Radiol; 2020 Jul; 30(7):4117-4124. PubMed ID: 32078013 [TBL] [Abstract][Full Text] [Related]
9. A preoperative radiomics model for the identification of lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Yan L; Yao H; Long R; Wu L; Xia H; Li J; Liu Z; Liang C Br J Radiol; 2020 Dec; 93(1116):20200358. PubMed ID: 32960673 [TBL] [Abstract][Full Text] [Related]
10. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Yuan Y; Ren J; Tao X Eur Radiol; 2021 Sep; 31(9):6429-6437. PubMed ID: 33569617 [TBL] [Abstract][Full Text] [Related]
11. Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach. Qiu H; Wang M; Wang S; Li X; Wang D; Qin Y; Xu Y; Yin X; Hacker M; Han S; Li X Cancer Imaging; 2024 Aug; 24(1):101. PubMed ID: 39090668 [TBL] [Abstract][Full Text] [Related]
12. Radiomics from dual-energy CT-derived iodine maps predict lymph node metastasis in head and neck squamous cell carcinoma. Zhang W; Liu J; Jin W; Li R; Xie X; Zhao W; Xia S; Han D Radiol Med; 2024 Feb; 129(2):252-267. PubMed ID: 38015363 [TBL] [Abstract][Full Text] [Related]
13. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques. Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning features based on F18 fluorodeoxyglucose positron emission tomography/computed tomography ( Wang H; Zhang J; Li Y; Wang D; Zhang T; Yang F; Li Y; Zhang Y; Yang L; Li P Clin Radiol; 2024 Sep; 79(9):e1152-e1158. PubMed ID: 38955636 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB-IIA cervical squamous cell carcinoma. Yu YY; Zhang R; Dong RT; Hu QY; Yu T; Liu F; Luo YH; Dong Y Br J Radiol; 2019 May; 92(1097):20180986. PubMed ID: 30888846 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer. Li X; Yang L; Jiao X Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154 [TBL] [Abstract][Full Text] [Related]
17. Radiomics analysis of CT imaging improves preoperative prediction of cervical lymph node metastasis in laryngeal squamous cell carcinoma. Zhao X; Li W; Zhang J; Tian S; Zhou Y; Xu X; Hu H; Lei D; Wu F Eur Radiol; 2023 Feb; 33(2):1121-1131. PubMed ID: 35984515 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [TBL] [Abstract][Full Text] [Related]
19. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years. Qian L; Liu X; Zhou S; Zhi W; Zhang K; Li H; Li J; Chang C Front Endocrinol (Lausanne); 2024; 15():1323452. PubMed ID: 39072273 [TBL] [Abstract][Full Text] [Related]
20. Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram. Lin M; Lin N; Yu S; Sha Y; Zeng Y; Liu A; Niu Y Acad Radiol; 2023 Oct; 30(10):2201-2211. PubMed ID: 36925335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]