BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38729454)

  • 1. The effects of fine particulate matter (SRM 2786) on three different 3D lung models exposed at the air-liquid interface - A comparative study.
    Grytting VS; Skuland T; Ballangby J; Refsnes M; Låg M; Øvrevik J; Mariussen E
    Toxicol In Vitro; 2024 Jun; 98():105841. PubMed ID: 38729454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models.
    Wang G; Zhang X; Liu X; Zheng J; Chen R; Kan H
    Toxicol Lett; 2019 Feb; 301():133-145. PubMed ID: 30481584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung.
    Klein SG; Serchi T; Hoffmann L; Blömeke B; Gutleb AC
    Part Fibre Toxicol; 2013 Jul; 10():31. PubMed ID: 23890538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel approach to study the cardiovascular effects and mechanism of action of urban particulate matter using lung epithelial-endothelial tetra-culture system.
    Kim HR; Cho HS; Shin DY; Chung KH
    Toxicol In Vitro; 2017 Feb; 38():33-40. PubMed ID: 27825930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter.
    Klein SG; Cambier S; Hennen J; Legay S; Serchi T; Nelissen I; Chary A; Moschini E; Krein A; Blömeke B; Gutleb AC
    Part Fibre Toxicol; 2017 Mar; 14(1):7. PubMed ID: 28264691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability and reproducibility of exposed air-liquid interface co-culture lung models.
    Braakhuis HM; Gremmer ER; Bannuscher A; Drasler B; Keshavan S; Rothen-Rutishauser B; Birk B; Verlohner A; Landsiedel R; Meldrum K; Doak SH; Clift MJD; Erdem JS; Foss OAH; Zienolddiny-Narui S; Serchi T; Moschini E; Weber P; Burla S; Kumar P; Schmid O; Zwart E; Vermeulen JP; Vandebriel RJ
    NanoImpact; 2023 Jul; 31():100466. PubMed ID: 37209722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respirable stone particles differ in their ability to induce cytotoxicity and pro-inflammatory responses in cell models of the human airways.
    Grytting VS; Refsnes M; Øvrevik J; Halle MS; Schönenberger J; van der Lelij R; Snilsberg B; Skuland T; Blom R; Låg M
    Part Fibre Toxicol; 2021 May; 18(1):18. PubMed ID: 33957952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air-liquid interface.
    He RW; Gerlofs-Nijland ME; Boere J; Fokkens P; Leseman D; Janssen NAH; Cassee FR
    Toxicol In Vitro; 2020 Oct; 68():104950. PubMed ID: 32726611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-inflammatory effects of crystalline- and nano-sized non-crystalline silica particles in a 3D alveolar model.
    Skuland T; Låg M; Gutleb AC; Brinchmann BC; Serchi T; Øvrevik J; Holme JA; Refsnes M
    Part Fibre Toxicol; 2020 Apr; 17(1):13. PubMed ID: 32316988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation.
    Barosova H; Chortarea S; Peikertova P; Clift MJD; Petri-Fink A; Kukutschova J; Rothen-Rutishauser B
    Arch Toxicol; 2018 Jul; 92(7):2339-2351. PubMed ID: 29748788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution.
    Zavala J; O'Brien B; Lichtveld K; Sexton KG; Rusyn I; Jaspers I; Vizuete W
    Inhal Toxicol; 2016; 28(6):251-9. PubMed ID: 27100558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter.
    Martin PJ; Héliot A; Trémolet G; Landkocz Y; Dewaele D; Cazier F; Ledoux F; Courcot D
    Environ Pollut; 2019 Nov; 254(Pt A):112933. PubMed ID: 31382213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.
    Bisig C; Petri-Fink A; Rothen-Rutishauser B
    Inhal Toxicol; 2018 Jan; 30(1):40-48. PubMed ID: 29508652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier.
    Costa A; de Souza Carvalho-Wodarz C; Seabra V; Sarmento B; Lehr CM
    Acta Biomater; 2019 Jun; 91():235-247. PubMed ID: 31004840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-induced cytokine responses in cardiac cell cultures--the effect of particles versus soluble mediators released by particle-exposed lung cells.
    Totlandsdal AI; Refsnes M; Skomedal T; Osnes JB; Schwarze PE; Låg M
    Toxicol Sci; 2008 Nov; 106(1):233-41. PubMed ID: 18700232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM
    Leclercq B; Happillon M; Antherieu S; Hardy EM; Alleman LY; Grova N; Perdrix E; Appenzeller BM; Lo Guidice JM; Coddeville P; Garçon G
    Environ Pollut; 2016 Nov; 218():1074-1088. PubMed ID: 27593349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses.
    Rynning I; Neca J; Vrbova K; Libalova H; Rossner P; Holme JA; Gützkow KB; Afanou AKJ; Arnoldussen YJ; Hruba E; Skare Ø; Haugen A; Topinka J; Machala M; Mollerup S
    Toxicol Sci; 2018 Nov; 166(1):51-64. PubMed ID: 30010986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging proteomics to compare submerged versus air-liquid interface carbon nanotube exposure to a 3D lung cell model.
    Hilton G; Barosova H; Petri-Fink A; Rothen-Rutishauser B; Bereman M
    Toxicol In Vitro; 2019 Feb; 54():58-66. PubMed ID: 30243732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity.
    Upadhyay S; Palmberg L
    Toxicol Sci; 2018 Jul; 164(1):21-30. PubMed ID: 29534242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.