These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38729583)
61. Rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification and phosphorus removal aerobic granular sequence batch reactor for treating low C/N domestic wastewater. Li D; Guo W; Liang D; Zhang J; Li J; Li P; Wu Y; Bian X; Ding F Environ Res; 2022 Sep; 212(Pt D):113464. PubMed ID: 35623442 [TBL] [Abstract][Full Text] [Related]
62. Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation. Wang X; Chen Z; Shen J; Zhao X; Kang J Bioresour Technol; 2019 Jan; 271():258-265. PubMed ID: 30278350 [TBL] [Abstract][Full Text] [Related]
65. [Research advance in aerobic sludge granulation for wastewater biological treatment]. Zhu L; Xu XY; Luo WG; Zha YM Huan Jing Ke Xue; 2007 Nov; 28(11):2657-64. PubMed ID: 18290500 [TBL] [Abstract][Full Text] [Related]
66. Modelling of aerobic granular sludge reactors: the importance of hydrodynamic regimes, selective sludge removal and gradients. Derlon N; Garcia Villodres M; Kovács R; Brison A; Layer M; Takács I; Morgenroth E Water Sci Technol; 2022 Aug; 86(3):410-431. PubMed ID: 35960827 [TBL] [Abstract][Full Text] [Related]
67. Effect of food-to-microorganisms ratio on aerobic granular sludge settleability: Microbial community, potential roles and sequential responses of extracellular proteins and polysaccharides. Wang G; Huang X; Wang S; Yang F; Sun S; Yan P; Chen Y; Fang F; Guo J J Environ Manage; 2023 Nov; 345():118814. PubMed ID: 37591089 [TBL] [Abstract][Full Text] [Related]
68. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Wang F; Lu S; Wei Y; Ji M J Hazard Mater; 2009 May; 164(2-3):1223-7. PubMed ID: 18980806 [TBL] [Abstract][Full Text] [Related]
69. Two-stage sequencing batch reactors with added iron shavings for nutrient removal and aerobic sludge granulation treating real wastewater with low carbon to nitrogen ratios. Pan Z; Wei H; Qiu C; Yang Q; Liang Y; Huang Z; Li J Bioresour Technol; 2024 Mar; 396():130380. PubMed ID: 38281551 [TBL] [Abstract][Full Text] [Related]
70. Effect of chlorination bulking control on water quality and phosphate release/uptake in an anaerobic-oxic activated sludge system. Chang WC; Jou SJ; Chien CC; He JA Water Sci Technol; 2004; 50(8):177-83. PubMed ID: 15566201 [TBL] [Abstract][Full Text] [Related]
71. Aeration control strategies to stimulate simultaneous nitrification-denitrification via nitrite during the formation of aerobic granular sludge. Dobbeleers T; D'aes J; Miele S; Caluwé M; Akkermans V; Daens D; Geuens L; Dries J Appl Microbiol Biotechnol; 2017 Sep; 101(17):6829-6839. PubMed ID: 28718056 [TBL] [Abstract][Full Text] [Related]
72. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature. Jiang Y; Shang Y; Wang H; Yang K Environ Technol; 2016 Dec; 37(23):3078-85. PubMed ID: 27166437 [TBL] [Abstract][Full Text] [Related]
73. Development of aerobic granular sludge under tropical climate conditions: The key role of inoculum adaptation under reduced sludge washout for stable granulation. Bassin JP; Tavares DC; Borges RC; Dezotti M J Environ Manage; 2019 Jan; 230():168-182. PubMed ID: 30292012 [TBL] [Abstract][Full Text] [Related]
74. [Simultaneous nitrogen and phosphorus removal by aerobic granular sludge at normal and low temperatures]. Chen RN; Gao JF; Guo JQ; Su K; Zhang Q Huan Jing Ke Xue; 2009 Oct; 30(10):2995-3001. PubMed ID: 19968120 [TBL] [Abstract][Full Text] [Related]
75. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Liu YQ; Tay JH Water Res; 2015 Sep; 80():256-66. PubMed ID: 26005786 [TBL] [Abstract][Full Text] [Related]
76. Rapid Formation of Aerobic Granular Sludge and Its Mechanism in a Continuous-Flow Bioreactor. Xin X; Lu H; Yao L; Leng L; Guan L Appl Biochem Biotechnol; 2017 Jan; 181(1):424-433. PubMed ID: 27600810 [TBL] [Abstract][Full Text] [Related]
77. [Cultivation and characteristic of aerobic granular sludge enriched by phosphorus accumulating organisms]. You Y; Peng Y; Yuan ZG; Li XY; Peng YZ Huan Jing Ke Xue; 2008 Aug; 29(8):2242-8. PubMed ID: 18839579 [TBL] [Abstract][Full Text] [Related]
78. Rapid aerobic sludge granulation in an integrated oxidation ditch with two-zone clarifiers. Xu D; Li J; Liu J; Ma T Water Res; 2020 May; 175():115704. PubMed ID: 32208174 [TBL] [Abstract][Full Text] [Related]
79. Achieving stably enhanced biological phosphorus removal from aerobic granular sludge system via phosphorus rich liquid extraction during anaerobic period. Wang J; Li Z; Wang Q; Lei Z; Yuan T; Shimizu K; Zhang Z; Adachi Y; Lee DJ; Chen R Bioresour Technol; 2022 Feb; 346():126439. PubMed ID: 34848332 [TBL] [Abstract][Full Text] [Related]
80. [Formation of the phosphorus removal granular sludge and phosphorus removal characteristics of the anaerobic/oxic and anaerobic/anoxic/oxic granular sludge process in SBR]. Liu XY; Jiang YH; Guo C; Peng DC Huan Jing Ke Xue; 2009 Sep; 30(9):2655-60. PubMed ID: 19927821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]