These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38729621)

  • 21. Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires.
    Lindgren D; Kawaguchi K; Heurlin M; Borgström MT; Pistol ME; Samuelson L; Gustafsson A
    Nanotechnology; 2013 Jun; 24(22):225203. PubMed ID: 23637013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity.
    Phillips CL; Brash AJ; Godsland M; Martin NJ; Foster A; Tomlinson A; Dost R; Babazadeh N; Sala EM; Wilson L; Heffernan J; Skolnick MS; Fox AM
    Sci Rep; 2024 Feb; 14(1):4450. PubMed ID: 38396018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of TOPO and TOPO-CdSe/ZnS Quantum Dots on Luminescence Photodynamics of InP/InAsP/InPHeterostructure Nanowires.
    Khrebtov AI; Danilov VV; Kulagina AS; Reznik RR; Skurlov ID; Litvin AP; Safin FM; Gridchin VO; Shevchuk DS; Shmakov SV; Yablonskiy AN; Cirlin GE
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33807550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm.
    Liu WS; Tseng HL; Kuo PC
    Opt Express; 2014 Aug; 22(16):18860-9. PubMed ID: 25320972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy.
    Rödel R; Bauer A; Kremling S; Reitzenstein S; Höfling S; Kamp M; Worschech L; Forchel A
    Nanotechnology; 2012 Jan; 23(1):015605. PubMed ID: 22156168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled 1.1-1.6 μm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires.
    Zhang G; Tateno K; Birowosuto MD; Notomi M; Sogawa T; Gotoh H
    Nanotechnology; 2015 Mar; 26(11):115704. PubMed ID: 25712797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters.
    Gajjela RSR; Sala EM; Heffernan J; Koenraad PM
    ACS Appl Nano Mater; 2022 Jun; 5(6):8070-8079. PubMed ID: 35783681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth and characterization of self-assembled InAs/InP quantum dot structures.
    Barik S; Tan HH; Wong-Leung J; Jagadish C
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1525-36. PubMed ID: 20355541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution.
    Brown RP; Gallagher MJ; Fairbrother DH; Rosenzweig Z
    Langmuir; 2018 Nov; 34(46):13924-13934. PubMed ID: 30351964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.
    Wang Y; Jackson HE; Smith LM; Burgess T; Paiman S; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2014 Dec; 14(12):7153-60. PubMed ID: 25382815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Band-selective infrared photodetectors with complete-composition-range InAs(x)P(1-x) alloy nanowires.
    Ren P; Hu W; Zhang Q; Zhu X; Zhuang X; Ma L; Fan X; Zhou H; Liao L; Duan X; Pan A
    Adv Mater; 2014 Nov; 26(44):7444-9. PubMed ID: 25257177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GaAs quantum dots in a GaP nanowire photodetector.
    Kuyanov P; McNamee SA; LaPierre RR
    Nanotechnology; 2018 Mar; 29(12):124003. PubMed ID: 29350630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE.
    Kelrich A; Dubrovskii VG; Calahorra Y; Cohen S; Ritter D
    Nanotechnology; 2015 Feb; 26(8):085303. PubMed ID: 25648852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet epitaxy of InAs/InP quantum dots via MOVPE by using an InGaAs interlayer.
    Sala EM; Godsland M; Na YI; Trapalis A; Heffernan J
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34731846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband tunable InAs/InP quantum dot external-cavity laser emitting around 1.55 μm.
    Gao F; Luo S; Ji HM; Yang XG; Liang P; Yang T
    Opt Express; 2015 Jul; 23(14):18493-500. PubMed ID: 26191907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of InAs quantum dots on GaAs nanowires by metal organic chemical vapor deposition.
    Yan X; Zhang X; Ren X; Huang H; Guo J; Guo X; Liu M; Wang Q; Cai S; Huang Y
    Nano Lett; 2011 Sep; 11(9):3941-5. PubMed ID: 21848312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures.
    Tateno K; Zhang G; Gotoh H; Sogawa T
    Nano Lett; 2012 Jun; 12(6):2888-93. PubMed ID: 22594554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots.
    Gajjela RSR; Koenraad PM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401568
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.