These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38729711)
1. Microbiome mapping in beef processing reveals safety-relevant variations in microbial diversity and genomic features. Sequino G; Cobo-Diaz JF; Valentino V; Tassou C; Volpe S; Torrieri E; Nychas GJ; Álvarez Ordóñez A; Ercolini D; De Filippis F Food Res Int; 2024 Jun; 186():114318. PubMed ID: 38729711 [TBL] [Abstract][Full Text] [Related]
2. In-depth characterization of food and environmental microbiomes across different meat processing plants. Barcenilla C; Cobo-Díaz JF; Puente A; Valentino V; De Filippis F; Ercolini D; Carlino N; Pinto F; Segata N; Prieto M; López M; Alvarez-Ordóñez A Microbiome; 2024 Oct; 12(1):199. PubMed ID: 39407346 [TBL] [Abstract][Full Text] [Related]
3. Microbial dynamics of South Korean beef and surroundings along the supply chain based on high-throughput sequencing. Yeom J; Bae D; Kim SA Meat Sci; 2024 Aug; 214():109520. PubMed ID: 38703561 [TBL] [Abstract][Full Text] [Related]
4. Shotgun-metagenomics reveals a highly diverse and communal microbial network present in the drains of three beef-processing plants. Palanisamy V; Bosilevac JM; Barkhouse DA; Velez SE; Chitlapilly Dass S Front Cell Infect Microbiol; 2023; 13():1240138. PubMed ID: 37743870 [TBL] [Abstract][Full Text] [Related]
5. Sequencing-based analysis of the microbiomes of Spanish food processing facilities reveals environment-specific variation in the dominant taxa and antibiotic resistance genes. Alvarez-Molina A; Cobo-Díaz JF; Alexa EA; Crispie F; Prieto M; López M; Cotter PD; Alvarez-Ordóñez A Food Res Int; 2023 Nov; 173(Pt 2):113442. PubMed ID: 37803768 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of microbiome and resistome in a poultry burger processing line. Merino N; Pagán E; Berdejo D; Worby CJ; Young M; Manson AL; Pagán R; Earl AM; García-Gonzalo D Food Res Int; 2024 Oct; 193():114842. PubMed ID: 39160043 [TBL] [Abstract][Full Text] [Related]
7. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. De Filippis F; La Storia A; Villani F; Ercolini D PLoS One; 2013; 8(7):e70222. PubMed ID: 23936168 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial packaging to retard the growth of spoilage bacteria and to reduce the release of volatile metabolites in meat stored under vacuum at 1°C. Ferrocino I; La Storia A; Torrieri E; Musso SS; Mauriello G; Villani F; Ercolini D J Food Prot; 2013 Jan; 76(1):52-8. PubMed ID: 23317856 [TBL] [Abstract][Full Text] [Related]
9. Influence of pathogen contamination on beef microbiota under different storage temperatures. Choi H; Hwang BK; Kim BS; Choi SH Food Res Int; 2020 Jun; 132():109118. PubMed ID: 32331694 [TBL] [Abstract][Full Text] [Related]
10. Strain-Level Diversity Analysis of Pseudomonas fragi after De Filippis F; La Storia A; Villani F; Ercolini D Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366996 [TBL] [Abstract][Full Text] [Related]
11. Insight into the Genome of Brochothrix thermosphacta, a Problematic Meat Spoilage Bacterium. Stanborough T; Fegan N; Powell SM; Tamplin M; Chandry PS Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986732 [No Abstract] [Full Text] [Related]
12. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Ercolini D; Russo F; Torrieri E; Masi P; Villani F Appl Environ Microbiol; 2006 Jul; 72(7):4663-71. PubMed ID: 16820458 [TBL] [Abstract][Full Text] [Related]
13. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. Cobo-Díaz JF; Alvarez-Molina A; Alexa EA; Walsh CJ; Mencía-Ares O; Puente-Gómez P; Likotrafiti E; Fernández-Gómez P; Prieto B; Crispie F; Ruiz L; González-Raurich M; López M; Prieto M; Cotter P; Alvarez-Ordóñez A Microbiome; 2021 Oct; 9(1):204. PubMed ID: 34645520 [TBL] [Abstract][Full Text] [Related]
15. Microbiome dynamics, antibiotic resistance gene patterns and spoilage-associated genomic potential in fresh anchovies stored in different conditions. Sequino G; Valentino V; Esposito A; Volpe S; Torrieri E; De Filippis F; Ercolini D Food Res Int; 2024 Jan; 175():113788. PubMed ID: 38129066 [TBL] [Abstract][Full Text] [Related]
16. Bacterial community analysis using 16S rRNA amplicon sequencing in the boning room of Australian beef export abattoirs. Kang S; Ravensdale JT; Coorey R; Dykes GA; Barlow RS Int J Food Microbiol; 2020 Nov; 332():108779. PubMed ID: 32673761 [TBL] [Abstract][Full Text] [Related]
17. Exploring the resistome, virulome, mobilome and microbiome along pork production chain using metagenomics. Li L; Xiao Y; Wang C; Olsen RH; Meng H; Shi L Int J Food Microbiol; 2022 Jun; 371():109674. PubMed ID: 35413521 [TBL] [Abstract][Full Text] [Related]
18. Effect of abattoir and cut on variations in microbial communities of vacuum-packaged beef. Kaur M; Bowman JP; Porteus B; Dann AL; Tamplin M Meat Sci; 2017 Sep; 131():34-39. PubMed ID: 28458086 [TBL] [Abstract][Full Text] [Related]
19. Impact of Electrolyzed Water on the Microbial Spoilage Profile of Piedmontese Steak Tartare. Botta C; Coisson JD; Ferrocino I; Colasanto A; Pessione A; Cocolin L; Arlorio M; Rantsiou K Microbiol Spectr; 2021 Dec; 9(3):e0175121. PubMed ID: 34787437 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Mansur AR; Song EJ; Cho YS; Nam YD; Choi YS; Kim DO; Seo DH; Nam TG Food Microbiol; 2019 Feb; 77():166-172. PubMed ID: 30297047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]