These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38729717)
1. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Liu G; Zhou J; Wu S; Fang S; Bilal M; Xie C; Wang P; Yin Y; Yang R Food Res Int; 2024 Jun; 186():114335. PubMed ID: 38729717 [TBL] [Abstract][Full Text] [Related]
2. Germination time and in vitro gastrointestinal digestion impact on the isoflavone bioaccessibility and antioxidant capacities of soybean sprouts. Lu F; Wang Y; Wu S; Huang W; Yao H; Wang S; Shi X; Laborda P; Herrera-Balandrano DD Food Chem; 2024 Dec; 460(Pt 1):140517. PubMed ID: 39043074 [TBL] [Abstract][Full Text] [Related]
3. Isoflavone profile in soymilk as affected by soybean variety, grinding, and heat-processing methods. Zhang Y; Chang SK; Liu Z J Food Sci; 2015 May; 80(5):C983-8. PubMed ID: 25827234 [TBL] [Abstract][Full Text] [Related]
4. Innovative Soaking and Grinding Methods and Cooking Affect the Retention of Isoflavones, Antioxidant and Antiproliferative Properties in Soymilk Prepared from Black Soybean. Tan Y; Chang SK; Zhang Y J Food Sci; 2016 Apr; 81(4):H1016-23. PubMed ID: 26954068 [TBL] [Abstract][Full Text] [Related]
5. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous beta-glucosidases. Otieno DO; Shah NP J Appl Microbiol; 2007 Sep; 103(3):601-12. PubMed ID: 17714393 [TBL] [Abstract][Full Text] [Related]
6. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B. Ma M; Wang P; Yang R; Gu Z Food Chem; 2018 Jun; 250():259-267. PubMed ID: 29412920 [TBL] [Abstract][Full Text] [Related]
7. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Huang X; Cai W; Xu B Food Chem; 2014 Jan; 143():268-76. PubMed ID: 24054239 [TBL] [Abstract][Full Text] [Related]
8. Acid induced gelation of soymilk, comparison between gels prepared with lactic acid bacteria and glucono-δ-lactone. Grygorczyk A; Corredig M Food Chem; 2013 Dec; 141(3):1716-21. PubMed ID: 23870883 [TBL] [Abstract][Full Text] [Related]
9. Isoflavone profiles and antioxidant properties in different parts of soybean sprout. Kim MA; Kim MJ J Food Sci; 2020 Mar; 85(3):689-695. PubMed ID: 32078746 [TBL] [Abstract][Full Text] [Related]
10. Impact of processing technologies on isoflavones, phenolic acids, and antioxidant capacities of soymilk prepared from 15 soybean varieties. Yu X; Meenu M; Xu B; Yu H Food Chem; 2021 May; 345():128612. PubMed ID: 33352407 [TBL] [Abstract][Full Text] [Related]
11. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk. Hsia SY; Hsiao YH; Li WT; Hsieh JF Sci Rep; 2016 Oct; 6():35718. PubMed ID: 27760990 [TBL] [Abstract][Full Text] [Related]
12. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Chien HL; Huang HY; Chou CC Food Microbiol; 2006 Dec; 23(8):772-8. PubMed ID: 16943081 [TBL] [Abstract][Full Text] [Related]
14. Comparison on Protein Bioaccessibility of Soymilk Gels Induced by Glucono-δ-Lactone and Lactic Acid Bacteria. Hui T; Tang T; Gu X; Yuan Z; Xing G Molecules; 2022 Sep; 27(19):. PubMed ID: 36234732 [TBL] [Abstract][Full Text] [Related]
15. Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Wei QK; Chen TR; Chen JT Int J Food Microbiol; 2007 Jun; 117(1):120-4. PubMed ID: 17477997 [TBL] [Abstract][Full Text] [Related]
16. Analysis on physicochemical and sensory qualities of soymilk prepared by various cultivars: Application of fuzzy logic technique. Jin X; Chen C; Guo S; Zhang H J Food Sci; 2020 Jun; 85(6):1635-1641. PubMed ID: 32449945 [TBL] [Abstract][Full Text] [Related]
17. Formation and Properties of Recombined Soymilk and Cow's Milk Gels: Effect of Glucono-δ-lactone. Zhao Y; Liu Q; Zhang S; Jiang L; Liu Y; Han C J Oleo Sci; 2018 Jul; 67(7):885-892. PubMed ID: 29877226 [TBL] [Abstract][Full Text] [Related]
18. Soymilk processing with higher isoflavone aglycone content. Baú TR; Ida EI Food Chem; 2015 Sep; 183():161-8. PubMed ID: 25863624 [TBL] [Abstract][Full Text] [Related]
19. Nutritional evaluation and transcriptome analyses of short-time germinated seeds in soybean (Glycine max L. Merri.). Hu W; Liu X; Xiong Y; Liu T; Li Z; Song J; Wang J; Wang X; Li X Sci Rep; 2021 Nov; 11(1):22714. PubMed ID: 34811436 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. Tang AL; Shah NP; Wilcox G; Walker KZ; Stojanovska L J Food Sci; 2007 Nov; 72(9):M431-6. PubMed ID: 18034738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]