These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38729800)

  • 1. Long-range energy transfer amplifies quantum yield of upconversion nanoparticles.
    Wang W; Chen B
    Sci Bull (Beijing); 2024 Jun; 69(12):1809-1812. PubMed ID: 38729800
    [No Abstract]   [Full Text] [Related]  

  • 2. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.
    Su Q; Feng W; Yang D; Li F
    Acc Chem Res; 2017 Jan; 50(1):32-40. PubMed ID: 27983801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Quantum Yield of Upconverting Nanoparticles in Aqueous Media via Emission Sensitization.
    Wisser MD; Fischer S; Siefe C; Alivisatos AP; Salleo A; Dionne JA
    Nano Lett; 2018 Apr; 18(4):2689-2695. PubMed ID: 29589449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.
    Chen G; Damasco J; Qiu H; Shao W; Ohulchanskyy TY; Valiev RR; Wu X; Han G; Wang Y; Yang C; Ågren H; Prasad PN
    Nano Lett; 2015 Nov; 15(11):7400-7. PubMed ID: 26487489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Upconversion Efficiency and Spectrum of Upconversion Nanoparticles through Surface Decorating of an Organic Dye.
    Xue M; Cao C; Zhou X; Xu M; Feng W; Li F
    Inorg Chem; 2019 Nov; 58(21):14490-14497. PubMed ID: 31600068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Quantum Dot (QD)/Mediator Interface for Optimal Efficiency of QD-Sensitized Near-Infrared-to-Visible Photon Upconversion Systems.
    Xu Z; Huang Z; Li C; Huang T; Evangelista FA; Tang ML; Lian T
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36558-36567. PubMed ID: 32677433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent effects on the triplet-triplet annihilation upconversion of diiodo-Bodipy and perylene.
    Zhou Q; Zhou M; Wei Y; Zhou X; Liu S; Zhang S; Zhang B
    Phys Chem Chem Phys; 2017 Jan; 19(2):1516-1525. PubMed ID: 27990551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute upconversion quantum yields of blue-emitting LiYF
    Meijer MS; Rojas-Gutierrez PA; Busko D; Howard IA; Frenzel F; Würth C; Resch-Genger U; Richards BS; Turshatov A; Capobianco JA; Bonnet S
    Phys Chem Chem Phys; 2018 Sep; 20(35):22556-22562. PubMed ID: 30155527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The upconversion quantum yield (UCQY): a review to standardize the measurement methodology, improve comparability, and define efficiency standards.
    Jones CMS; Gakamsky A; Marques-Hueso J
    Sci Technol Adv Mater; 2021; 22(1):810-848. PubMed ID: 34992499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upconversion-Powered Photoelectrochemical Bioanalysis for DNA Sensing.
    Liu H; Wei W; Song J; Hu J; Wang Z; Lin P
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles.
    Zhou B; Tang B; Zhang C; Qin C; Gu Z; Ma Y; Zhai T; Yao J
    Nat Commun; 2020 Mar; 11(1):1174. PubMed ID: 32132529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplifying Photon Upconversion in Alloyed Nanoparticles for a Near-Infrared Photodetector.
    Yan L; Tao L; Zhang Q; Huang H; Zhang Q; Zhou B
    Nano Lett; 2024 Apr; 24(15):4580-4587. PubMed ID: 38573804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Based Linear Light Upconversion Implemented in Molecular Complexes: Challenges and Perspectives.
    Bolvin H; Fürstenberg A; Golesorkhi B; Nozary H; Taarit I; Piguet C
    Acc Chem Res; 2022 Feb; 55(3):442-456. PubMed ID: 35067044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the Ligand-Induced Triplet Energy Transfer Barrier in a Quantum Dot-Based Upconversion System.
    Miyashita T; Jaimes P; Lian T; Tang ML; Xu Z
    J Phys Chem Lett; 2022 Apr; 13(13):3002-3007. PubMed ID: 35347991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion.
    Xu Z; Huang Z; Jin T; Lian T; Tang ML
    Acc Chem Res; 2021 Jan; 54(1):70-80. PubMed ID: 33141563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning upconversion through energy migration in core-shell nanoparticles.
    Wang F; Deng R; Wang J; Wang Q; Han Y; Zhu H; Chen X; Liu X
    Nat Mater; 2011 Oct; 10(12):968-73. PubMed ID: 22019945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer designing in lanthanide-doped upconversion nanoparticles.
    Cheng X; Tu D; Zheng W; Chen X
    Chem Commun (Camb); 2020 Dec; 56(96):15118-15132. PubMed ID: 33206075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eu
    Nunes Coelho SF; Bispo-Jr AG; de Oliveira NA; Mazali IO; Sigoli FA
    Nanoscale; 2024 Apr; 16(15):7493-7503. PubMed ID: 38465723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of an inert shell in improving energy utilization in lanthanide-doped upconversion nanoparticles.
    Wang Y
    Nanoscale; 2019 Jun; 11(22):10852-10858. PubMed ID: 31135014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution from Tunneling to Hopping Mediated Triplet Energy Transfer from Quantum Dots to Molecules.
    Huang Z; Xu Z; Huang T; Gray V; Moth-Poulsen K; Lian T; Tang ML
    J Am Chem Soc; 2020 Oct; 142(41):17581-17588. PubMed ID: 32969652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.