These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 38730184)

  • 1. MISATO: machine learning dataset of protein-ligand complexes for structure-based drug discovery.
    Siebenmorgen T; Menezes F; Benassou S; Merdivan E; Didi K; Mourão ASD; Kitel R; Liò P; Kesselheim S; Piraud M; Theis FJ; Sattler M; Popowicz GM
    Nat Comput Sci; 2024 May; 4(5):367-378. PubMed ID: 38730184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What Next for Quantum Mechanics in Structure-Based Drug Discovery?
    Bryce RA
    Methods Mol Biol; 2020; 2114():339-353. PubMed ID: 32016902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Simulation: A Tool for Structure-Based Drug Design and Discovery.
    Kulkarni PU; Shah H; Vyas VK
    Mini Rev Med Chem; 2022; 22(8):1096-1107. PubMed ID: 34620049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation with quantum mechanics/molecular mechanics for drug discovery.
    Barbault F; Maurel F
    Expert Opin Drug Discov; 2015 Oct; 10(10):1047-57. PubMed ID: 26289577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications.
    Morawietz T; Artrith N
    J Comput Aided Mol Des; 2021 Apr; 35(4):557-586. PubMed ID: 33034008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of molecular mechanics, semi-empirical quantum mechanical, and density functional theory methods for scoring protein-ligand interactions.
    Yilmazer ND; Korth M
    J Phys Chem B; 2013 Jul; 117(27):8075-84. PubMed ID: 23758433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.
    Andersson CR; Gustafsson MG; Strömbergsson H
    Curr Top Med Chem; 2011; 11(15):1978-93. PubMed ID: 21470169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications.
    Korlepara DB; Vasavi CS; Jeurkar S; Pal PK; Roy S; Mehta S; Sharma S; Kumar V; Muvva C; Sridharan B; Garg A; Modee R; Bhati AP; Nayar D; Priyakumar UD
    Sci Data; 2022 Sep; 9(1):548. PubMed ID: 36071074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLAS-20k: Extended Dataset of Protein-Ligand Affinities from MD Simulations for Machine Learning Applications.
    Korlepara DB; C S V; Srivastava R; Pal PK; Raza SH; Kumar V; Pandit S; Nair AG; Pandey S; Sharma S; Jeurkar S; Thakran K; Jaglan R; Verma S; Ramachandran I; Chatterjee P; Nayar D; Priyakumar UD
    Sci Data; 2024 Feb; 11(1):180. PubMed ID: 38336857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanics implementation in drug-design workflows: does it really help?
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2017; 11():2551-2564. PubMed ID: 28919707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptic binding sites on proteins: definition, detection, and druggability.
    Vajda S; Beglov D; Wakefield AE; Egbert M; Whitty A
    Curr Opin Chem Biol; 2018 Jun; 44():1-8. PubMed ID: 29800865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.
    Yilmazer ND; Korth M
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27196893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.