BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38730312)

  • 21. Saccharomyces cerevisiae strains used industrially for bioethanol production.
    Jacobus AP; Gross J; Evans JH; Ceccato-Antonini SR; Gombert AK
    Essays Biochem; 2021 Jul; 65(2):147-161. PubMed ID: 34156078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening novel genes by a comprehensive strategy to construct multiple stress-tolerant industrial Saccharomyces cerevisiae with prominent bioethanol production.
    Wang L; Li B; Su RR; Wang SP; Xia ZY; Xie CY; Tang YQ
    Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):11. PubMed ID: 35418148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A synthetic medium to simulate sugarcane molasses.
    Lino FSO; Basso TO; Sommer MOA
    Biotechnol Biofuels; 2018; 11():221. PubMed ID: 30127851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production.
    Hemansi ; Himanshu ; Patel AK; Saini JK; Singhania RR
    Bioresour Technol; 2022 Jan; 344(Pt B):126247. PubMed ID: 34740795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the potential of wild yeasts for bioethanol production.
    Ruyters S; Mukherjee V; Verstrepen KJ; Thevelein JM; Willems KA; Lievens B
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):39-48. PubMed ID: 25413210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae.
    Bassi AP; da Silva JC; Reis VR; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1661-76. PubMed ID: 23536198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-Term Adaption to High Osmotic Stress as a Tool for Improving Enological Characteristics in Industrial Wine Yeast.
    Betlej G; Bator E; Oklejewicz B; Potocki L; Górka A; Slowik-Borowiec M; Czarny W; Domka W; Kwiatkowska A
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32443892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Over-expression of Isu1p and Jac1p increases the ethanol tolerance and yield by superoxide and iron homeostasis mechanism in an engineered Saccharomyces cerevisiae yeast.
    Martínez-Alcántar L; Madrigal A; Sánchez-Briones L; Díaz-Pérez AL; López-Bucio JS; Campos-García J
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):925-936. PubMed ID: 30963327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitigating stress in industrial yeasts.
    Walker GM; Basso TO
    Fungal Biol; 2020 May; 124(5):387-397. PubMed ID: 32389301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain.
    Muller G; de Godoy VR; Dário MG; Duval EH; Alves-Jr SL; Bücker A; Rosa CA; Dunn B; Sherlock G; Stambuk BU
    J Fungi (Basel); 2023 Jul; 9(8):. PubMed ID: 37623574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.
    Turanlı-Yıldız B; Benbadis L; Alkım C; Sezgin T; Akşit A; Gökçe A; Öztürk Y; Baykal AT; Çakar ZP; François JM
    J Biosci Bioeng; 2017 Sep; 124(3):309-318. PubMed ID: 28552194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.
    Demeke MM; Dumortier F; Li Y; Broeckx T; Foulquié-Moreno MR; Thevelein JM
    Biotechnol Biofuels; 2013 Aug; 6(1):120. PubMed ID: 23971950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2.
    Pereira FB; Gomes DG; Guimarães PM; Teixeira JA; Domingues L
    Biotechnol Lett; 2012 Jan; 34(1):45-53. PubMed ID: 21898130
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Mo W; Wang M; Zhan R; Yu Y; He Y; Lu H
    Biotechnol Biofuels; 2019; 12():63. PubMed ID: 30949239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive laboratory evolution to obtain furfural tolerant
    Yao L; Jia Y; Zhang Q; Zheng X; Yang H; Dai J; Chen X
    Front Microbiol; 2023; 14():1333777. PubMed ID: 38239732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
    Samakkarn W; Vandecruys P; Moreno MRF; Thevelein J; Ratanakhanokchai K; Soontorngun N
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):153. PubMed ID: 38240846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.
    Dong SJ; Yi CF; Li H
    Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.
    Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR
    Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must.
    Brown NA; de Castro PA; de Castro Pimentel Figueiredo B; Savoldi M; Buckeridge MS; Lopes ML; de Lima Paullilo SC; Borges EP; Amorim HV; Goldman MH; Bonatto D; Malavazi I; Goldman GH
    FEMS Yeast Res; 2013 May; 13(3):277-90. PubMed ID: 23360418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrient Signaling via the TORC1-Greatwall-PP2A
    Watanabe D; Kajihara T; Sugimoto Y; Takagi K; Mizuno M; Zhou Y; Chen J; Takeda K; Tatebe H; Shiozaki K; Nakazawa N; Izawa S; Akao T; Shimoi H; Maeda T; Takagi H
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30341081
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.