BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38730620)

  • 21. Histological basis of MR/optical imaging of human melanoma mouse xenografts spanning a range of metastatic potentials.
    Xu HN; Zhou R; Nioka S; Chance B; Glickson JD; Li LZ
    Adv Exp Med Biol; 2009; 645():247-53. PubMed ID: 19227478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples.
    Xu HN; Gonzalves D; Hoffman JH; Baur JA; Li LZ; Jensen EA
    Antioxidants (Basel); 2024 Apr; 13(5):. PubMed ID: 38790651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CHOP THERAPY INDUCED MITOCHONDRIAL REDOX STATE ALTERATION IN NON-HODGKIN'S LYMPHOMA XENOGRAFTS.
    Xu HN; Zhao H; Mir TA; Lee SC; Feng M; Choe R; Glickson JD; Li LZ
    J Innov Opt Health Sci; 2013 Apr; 6(2):1350011. PubMed ID: 23745147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing prostate tumor mouse xenografts with CEST and MT-MRI and redox scanning.
    Cai K; Xu HN; Singh A; Haris M; Reddy R; Li LZ
    Adv Exp Med Biol; 2013; 765():39-45. PubMed ID: 22879012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical Redox Imaging of Ex Vivo Hippocampal Tissue Reveals Age-Dependent Alterations in the 5XFAD Mouse Model of Alzheimer's Disease.
    Xu HN; Gourmaud S; Podsednik A; Li X; Zhao H; Jensen FE; Talos DM; Li LZ
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical redox imaging indices discriminate human breast cancer from normal tissues.
    Xu HN; Tchou J; Feng M; Zhao H; Li LZ
    J Biomed Opt; 2016 Nov; 21(11):114003. PubMed ID: 27896360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IMAGING REDOX STATE HETEROGENEITY WITHIN INDIVIDUAL EMBRYONIC STEM CELL COLONIES.
    Xu HN; Addis RC; Goings DF; Nioka S; Chance B; Gearhart JD; Li LZ
    J Innov Opt Health Sci; 2011 Jul; 4(3):279-288. PubMed ID: 34046096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells.
    Podsednik A; Jiang J; Jacob A; Li LZ; Xu HN
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism.
    Alhallak K; Rebello LG; Muldoon TJ; Quinn KP; Rajaram N
    Biomed Opt Express; 2016 Nov; 7(11):4364-4374. PubMed ID: 27895979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exercise-induced changes to the fiber type-specific redox state in human skeletal muscle are associated with aerobic capacity.
    Shadiow J; Miranda ER; Perkins RK; Mazo CE; Lin Z; Lewis KN; Mey JT; Solomon TPJ; Haus JM
    J Appl Physiol (1985); 2023 Sep; 135(3):508-518. PubMed ID: 37471216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio.
    Jacob A; Xu HN; Stout AL; Li LZ
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35945669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Redox Imaging Differentiates Triple-Negative Breast Cancer Subtypes.
    Jiang J; Feng M; Jacob A; Li LZ; Xu HN
    Adv Exp Med Biol; 2021; 1269():253-258. PubMed ID: 33966226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
    Hu L; Wang N; Cardona E; Walsh AJ
    Biomed Opt Express; 2020 Oct; 11(10):5674-5688. PubMed ID: 33149978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox imaging of human breast cancer core biopsies: a preliminary investigation.
    Xu HN; Tchou J; Li LZ
    Acad Radiol; 2013 Jun; 20(6):764-8. PubMed ID: 23664401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
    Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ
    Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response.
    Gil DA; Deming D; Skala MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.