These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 38730753)

  • 41. Biodegradable Polymeric Architectures via Reversible Deactivation Radical Polymerizations.
    Quan F; Zhang A; Cheng F; Cui L; Liu J; Xia Y
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities.
    Kreutzer J; Yagci Y
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly Living Stars via Core-First Photo-RAFT Polymerization: Exploitation for Ultra-High Molecular Weight Star Synthesis.
    Allison-Logan S; Karimi F; Sun Y; McKenzie TG; Nothling MD; Bryant G; Qiao GG
    ACS Macro Lett; 2019 Oct; 8(10):1291-1295. PubMed ID: 35651148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures.
    McCormick CL; Lowe AB
    Acc Chem Res; 2004 May; 37(5):312-25. PubMed ID: 15147172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).
    Fairbanks BD; Gunatillake PA; Meagher L
    Adv Drug Deliv Rev; 2015 Aug; 91():141-52. PubMed ID: 26050529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cationic RAFT polymerization using ppm concentrations of organic acid.
    Uchiyama M; Satoh K; Kamigaito M
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1924-8. PubMed ID: 25511364
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyperbranched Bisphosphonate-Functional Polymers via Self-Condensing Vinyl Polymerization and Postpolymerization Multicomponent Reactions.
    Calvo PR; Sparks CA; Hochberg J; Wagener KB; Sumerlin BS
    Macromol Rapid Commun; 2021 Mar; 42(6):e2000578. PubMed ID: 33274810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization.
    Sbordone F; Frisch H
    Chemistry; 2024 Aug; 30(44):e202401547. PubMed ID: 38818742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent progress of non-linear topological structure polymers: synthesis, and gene delivery.
    Wang C; He W; Wang F; Yong H; Bo T; Yao D; Zhao Y; Pan C; Cao Q; Zhang S; Li M
    J Nanobiotechnology; 2024 Jan; 22(1):40. PubMed ID: 38280987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies.
    Sun H; Yang L; Thompson MP; Schara S; Cao W; Choi W; Hu Z; Zang N; Tan W; Gianneschi NC
    Bioconjug Chem; 2019 Jul; 30(7):1889-1904. PubMed ID: 30969752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-property relationships for polycarboxylate ether superplasticizers by means of RAFT polymerization.
    Ezzat M; Xu X; El Cheikh K; Lesage K; Hoogenboom R; De Schutter G
    J Colloid Interface Sci; 2019 Oct; 553():788-797. PubMed ID: 31255940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface active properties of polyoxyethylene macromonomers and their role in radical polymerization in disperse systems.
    Capek I
    Adv Colloid Interface Sci; 2000 Dec; 88(3):295-357. PubMed ID: 11130017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Progress Toward Sustainable Reversible Deactivation Radical Polymerization.
    Scholten PBV; Moatsou D; Detrembleur C; Meier MAR
    Macromol Rapid Commun; 2020 Aug; 41(16):e2000266. PubMed ID: 32686239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.
    Bauri K; Roy SG; Pant S; De P
    Langmuir; 2013 Feb; 29(8):2764-74. PubMed ID: 23346856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Strategy for Controlling the Polymerizations of Thiyl Radical Propagation by RAFT Agents.
    Zhang S; Wang Y; Huang H; Cao D
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308524. PubMed ID: 37478164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications.
    An Z; Qiu Q; Liu G
    Chem Commun (Camb); 2011 Dec; 47(46):12424-40. PubMed ID: 21863172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled-Radical Polymerization of α-Lipoic Acid: A General Route to Degradable Vinyl Copolymers.
    Albanese KR; Morris PT; Read de Alaniz J; Bates CM; Hawker CJ
    J Am Chem Soc; 2023 Oct; 145(41):22728-22734. PubMed ID: 37813389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials.
    Bellotti V; Simonutti R
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33915928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization: Precision polymer synthesis via enzymatic catalysis.
    Wang X; An Z
    Methods Enzymol; 2019; 627():291-319. PubMed ID: 31630745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of Janus and Patchy Particles Using Nanogels as Stabilizers in Emulsion Polymerization.
    Lotierzo A; Longbottom BW; Lee WH; Bon SAF
    ACS Nano; 2019 Jan; 13(1):399-407. PubMed ID: 30566826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.