These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38730804)

  • 21. Two-dimensional graphyne-graphene heterostructure for all-carbon transistors.
    Huang J; Kang J
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35108693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene Schottky Junction on Pillar Patterned Silicon Substrate.
    Luongo G; Grillo A; Giubileo F; Iemmo L; Lukosius M; Alvarado Chavarin C; Wenger C; Di Bartolomeo A
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31027368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interface effects of Schottky devices built from MoS
    Li YD; Zhen WL; Weng SR; Hu HJ; Niu R; Yue ZL; Xu F; Zhu WK; Zhang CJ
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35105834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Photocurrent in Gated Graphene-Silicon Hybrid Photodiodes.
    Riazimehr S; Kataria S; Bornemann R; Haring Bolívar P; Ruiz FJG; Engström O; Godoy A; Lemme MC
    ACS Photonics; 2017 Jun; 4(6):1506-1514. PubMed ID: 28781983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Schottky barrier lowering due to interface states in 2D heterophase devices.
    Jelver L; Stradi D; Stokbro K; Jacobsen KW
    Nanoscale Adv; 2021 Jan; 3(2):567-574. PubMed ID: 36131736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.
    Selvi H; Unsuree N; Whittaker E; Halsall MP; Hill EW; Thomas A; Parkinson P; Echtermeyer TJ
    Nanoscale; 2018 Feb; 10(7):3399-3409. PubMed ID: 29388650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical characterization of n/p-type nickel silicide/silicon junctions by Sb segregation.
    Jun M; Park Y; Hyun Y; Choi SJ; Zyung T; Jang M
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7339-42. PubMed ID: 22103191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transition from Schottky to Ohmic contacts in 2D Ge/GaAs heterostructures with high tunneling probability.
    Shen Y; Zhu J; Zhang Q; Zhu H; Fang Q; Yang X; Wang B
    Phys Chem Chem Phys; 2024 Mar; 26(11):8842-8849. PubMed ID: 38426259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures.
    Lin YC; Li J; de la Barrera SC; Eichfeld SM; Nie Y; Addou R; Mende PC; Wallace RM; Cho K; Feenstra RM; Robinson JA
    Nanoscale; 2016 Apr; 8(16):8947-54. PubMed ID: 27073972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of the transport properties of metal/MoS
    Guo R; Su J; Zhang P; He F; Lin Z; Zhang J; Chang J; Hao Y
    Nanotechnology; 2020 Nov; 31(48):485204. PubMed ID: 32931467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Schottky barrier inhomogeneities at the interface of different epitaxial layer thicknesses of
    Al-Ahmadi NA
    Heliyon; 2020 Sep; 6(9):e04852. PubMed ID: 32995595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the Electronic Transport of Al-Si and Al-Ge Nanojunctions by Exploiting Temperature-Dependent Bias Spectroscopy.
    Behrle R; Murphey CGE; Cahoon JF; Barth S; den Hertog MI; Weber WM; Sistani M
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19350-19358. PubMed ID: 38563742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.
    Son Y; Li J; Peterson RL
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23801-9. PubMed ID: 27559750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A High Current Density Direct-Current Generator Based on a Moving van der Waals Schottky Diode.
    Lin S; Lu Y; Feng S; Hao Z; Yan Y
    Adv Mater; 2019 Feb; 31(7):e1804398. PubMed ID: 30556216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe
    Lan Y; Xia LX; Huang T; Xu W; Huang GF; Hu W; Huang WQ
    Nanoscale Res Lett; 2020 Sep; 15(1):180. PubMed ID: 32955632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene as a Schottky Barrier Contact to AlGaN/GaN Heterostructures.
    Dub M; Sai P; Przewłoka A; Krajewska A; Sakowicz M; Prystawko P; Kacperski J; Pasternak I; Cywiński G; But D; Knap W; Rumyantsev S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32957632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS
    Zheng C; Zhang Q; Weber B; Ilatikhameneh H; Chen F; Sahasrabudhe H; Rahman R; Li S; Chen Z; Hellerstedt J; Zhang Y; Duan WH; Bao Q; Fuhrer MS
    ACS Nano; 2017 Mar; 11(3):2785-2793. PubMed ID: 28221762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes.
    Nicholls J; Dimitrijev S; Tanner P; Han J
    Sci Rep; 2019 Mar; 9(1):3754. PubMed ID: 30842531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure.
    Wang S; Chou JP; Ren C; Tian H; Yu J; Sun C; Xu Y; Sun M
    Sci Rep; 2019 Mar; 9(1):5208. PubMed ID: 30914666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A low Schottky barrier height and transport mechanism in gold-graphene-silicon (001) heterojunctions.
    Courtin J; Le Gall S; Chrétien P; Moréac A; Delhaye G; Lépine B; Tricot S; Turban P; Schieffer P; Le Breton JC
    Nanoscale Adv; 2019 Sep; 1(9):3372-3378. PubMed ID: 36133562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.