BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38730808)

  • 1. Effects of Steel Slag on the Hydration Process of Solid Waste-Based Cementitious Materials.
    Ren C; Wang J; Duan K; Li X; Wang D
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Hydration Properties of Steel Slag-Based Composite Cementitious Materials with High Strength.
    Xu Z; Ma Y; Wang J; Shen X
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Effects of Refining Slag on Properties and Hydration of Cemented Solid Waste-Based Backfill.
    Tang C; Mu X; Ni W; Xu D; Li K
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Hydration Mechanisms of Low Carbon Ferrochrome Slag-Granulated Blast Furnace Slag Composite Cementitious Materials.
    Ren C; Li K; Wang Y; Li Y; Tong J; Cai J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration and Compressive Strength of Activated Blast-Furnace Slag-Steel Slag with Na
    Wang Y; Jiang B; Su Y; He X; Wang Y; Oh S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Preparation Technology of Green Multiple Solid Waste Cementitious Materials.
    Ge Y; Liu X; Shui Z; Gao X; Zheng W; Zhu Z; Zhao X
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergistic hydration mechanism and environmental safety of multiple solid wastes in red mud-based cementitious materials.
    Zhu J; Yue H; Ma L; Li Z; Bai R
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):79241-79257. PubMed ID: 37286836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and performance of composite activated slag-based binder for cemented paste backfill.
    Yang F; Wu F; Yang B; Li L; Gao Q
    Chemosphere; 2022 Dec; 309(Pt 1):136649. PubMed ID: 36181840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials.
    Lv Y; Wang C; Han W; Li X; Peng H
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and Hydration Mechanism of Soda Residue-Activated Ground Granulated Blast Furnace Slag Cementitious Materials.
    Lin Y; Xu D; Zhao X
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Process of Solid Waste Composite-Based Cementitious Materials for Immobilizing and Characterizing Heavy Metals in Lead and Zinc Tailings: Based on XRD, SEM-EDS and Compressive Strength Characterization.
    Lu J; Wu D; Li S; Gao X
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties and Microscopic Mechanism of a Multi-Cementitious System Comprising Cement, Fly Ash, and Steel Slag Powder.
    Zhang Y; Zhang S; Nie Q; Shen L; Wang W
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration and Microstructure of Steel Slag as Cementitious Material and Fine Aggregate in Mortar.
    Jing W; Jiang J; Ding S; Duan P
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32998378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the synergistic effects of magnesia-coal slag based solid waste cementitious materials and its basic characteristics as a backfill material.
    Yang P; Liu L; Suo Y; Qu H; Xie G; Zhang C; Deng S; Lv Y
    Sci Total Environ; 2023 Jul; 880():163209. PubMed ID: 37001664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Preparation Process and Hydration Mechanism of Steel Slag-Based Ultra-Fine Tailing Cementitious Filler.
    Zhang S; Wu B; Ren Y; Wu Z; Li Q; Li K; Zhang M; Yu J; Liu J; Ni W
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and Key Properties of Phosphogypsum-Red Mud-Slag Composite Cementitious Materials.
    Ma F; Chen L; Lin Z; Liu Z; Zhang W; Guo R
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Cemented Oil Shale Residue-Steel Slag-Ground Granulated Blast Furnace Slag Backfill and Its Environmental Impact.
    Li X; Li K; Sun Q; Liu L; Yang J; Xue H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on hydration mechanism and environmental safety of thermal activated red mud-based cementitious materials.
    Zhu J; Yue H; Ma L; Li Z; Bai R
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55905-55921. PubMed ID: 36905547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium Slag and Solid Waste-Based Binders for Cemented Lithium Mica Fine Tailings Backfill.
    Li J; Huang J; Hu Y; Zhu D
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Property Comparison of Alkali-Activated Carbon Steel Slag (CSS) and Stainless Steel Slag (SSS) and Role of Blast Furnace Slag (BFS) Chemical Composition.
    Liu J; Yi C; Zhu H; Ma H
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.