These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38730850)

  • 1. Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach.
    Zarrouk T; Salhi JE; Nouari M; Bouali A
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of hybrid ultrasonic machining process of Nomex honeycomb composite using a toothed disc cutter.
    Mughal KH; Qureshi MAM; Jamil MF; Ahmad S; Ahmad Khalid F; Qaiser AA; Maqbool A; Raza SF; Zhang J
    Ultrasonics; 2024 Jul; 141():107343. PubMed ID: 38754149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Thin-Edged Part Machining of Nomex Honeycomb Composites via Optimizing Variable Angle of Disc Cutters.
    Yuan X; Zhang K; Zha H; Xu J; Song G; Cao W; Feng P; Feng F
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and numerical simulation of the chip formation process when machining Nomex.
    Zarrouk T; Salhi JE; Atlati S; Nouari M; Salhi M; Salhi N
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):98-105. PubMed ID: 33821444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and experimental study of ultrasonic cutting for aluminum honeycomb by disc cutter.
    Sun J; Dong Z; Wang X; Wang Y; Qin Y; Kang R
    Ultrasonics; 2020 Apr; 103():106102. PubMed ID: 32078844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM.
    Jain AK; Pandey PM
    Ultrasonics; 2017 May; 77():1-16. PubMed ID: 28167315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the Surface Integrity of 40Cr Steel Machined by Rotary Ultrasonic Flank Milling.
    Zhu S; Sun Y; Wang F; Gong H
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and experimental investigations on rotary ultrasonic surface micro-machining of brittle materials.
    Li Y; Zhang D; Wang H; Ye G; He R; Cong W
    Ultrason Sonochem; 2022 Sep; 89():106162. PubMed ID: 36113208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites.
    Ning F; Wang H; Cong W; Fernando PKSC
    Ultrasonics; 2017 Apr; 76():44-51. PubMed ID: 28040629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.
    Geng D; Zhang D; Xu Y; He F; Liu D; Duan Z
    Ultrasonics; 2015 May; 59():128-37. PubMed ID: 25708349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotary ultrasonic machining of CFRP: A comparison with grinding.
    Ning FD; Cong WL; Pei ZJ; Treadwell C
    Ultrasonics; 2016 Mar; 66():125-132. PubMed ID: 26614168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.
    Cong WL; Pei ZJ; Sun X; Zhang CL
    Ultrasonics; 2014 Feb; 54(2):663-75. PubMed ID: 24120374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.
    Chowdhury MAK; Sharif Ullah AMM; Anwar S
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28895876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Precision Analysis of Cutting Edge Preparation on CBN Cutting Inserts Using Rotary Ultrasonic Machining.
    Kuruc M; Vopát T; Moravčíková J; Milde J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V.
    Patil S; Joshi S; Tewari A; Joshi SS
    Ultrasonics; 2014 Feb; 54(2):694-705. PubMed ID: 24103362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Study and Verification of New Monolithic Rotary Cutting Tool for an Active Driven Rotation Machining.
    Czán A; Joch R; Šajgalík M; Holubják J; Horák A; Timko P; Valíček J; Kušnerová M; Harničárová M
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision Grinding Technology of Silicon Carbide (SiC) Ceramics by Longitudinal Torsional Ultrasonic Vibrations.
    Ye Z; Wen X; Wan W; Liu F; Bai W; Xu C; Chen H; Gong P; Han G
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Cutting Efficiency and Minimizing Forces for Nomex Honeycomb Core Using Grey Relational Analysis and Desirability Function Analysis.
    Habib H; Khan MS; Munir A; Zahid D; McDermott O
    Small Methods; 2024 May; 8(5):e2300958. PubMed ID: 38105388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP.
    Wang H; Ning F; Li Y; Hu Y; Cong W
    Ultrasonics; 2019 Aug; 97():19-28. PubMed ID: 31030058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Processing Parameters and Surface Quality of TC18 via Ultrasonic-Assisted Milling (UAM): An Experimental Study.
    Li G; Xie W; Wang H; Chai Y; Zhang S; Yang L
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.