These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 38730855)
1. The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model. Broniewicz M; Halicka A; Buda-Ożóg L; Broniewicz F; Nykiel D; Jabłoński Ł Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730855 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades. Morăraș CI; Goanță V; Husaru D; Istrate B; Bârsănescu PD; Munteanu C Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850147 [TBL] [Abstract][Full Text] [Related]
3. Exploratory Study on the Application of Graphene Platelet-Reinforced Composite to Wind Turbine Blade. Kim HJ; Cho JR Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065319 [TBL] [Abstract][Full Text] [Related]
4. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades. Kim HJ; Cho JR Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411 [TBL] [Abstract][Full Text] [Related]
5. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review. Ding S; Yang C; Zhang S Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714 [TBL] [Abstract][Full Text] [Related]
6. In-Depth Study on the Application of a Graphene Platelet-reinforced Composite to Wind Turbine Blades. Kim HJ; Cho JR Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203084 [TBL] [Abstract][Full Text] [Related]
7. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life. Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118 [TBL] [Abstract][Full Text] [Related]
8. Experimental Study of Used Wind Turbine Blades for Their Reuse in Slope and Trench Protection. Buda-Ożóg L; Halicka A; Broniewicz M; Zięba J; Nykiel D; Jabłoński Ł; Broniewicz F Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410506 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the Damage Effect on Fiberglass-Reinforced Polymer Matrix Composites for Wind Turbine Blades. Stanciu MD; Nastac SM; Tesula I Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406344 [TBL] [Abstract][Full Text] [Related]
17. Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities. Mikkelsen LP; Mishnaevsky L Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29117138 [TBL] [Abstract][Full Text] [Related]
18. Recycled wind turbine blades as a feedstock for second generation composites. Mamanpush SH; Li H; Englund K; Tabatabaei AT Waste Manag; 2018 Jun; 76():708-714. PubMed ID: 29506776 [TBL] [Abstract][Full Text] [Related]
19. Recycling of both resin and fibre from wind turbine blade waste via small molecule-assisted dissolution. Muzyka R; Sobek S; Korytkowska-Wałach A; Drewniak Ł; Sajdak M Sci Rep; 2023 Jun; 13(1):9270. PubMed ID: 37286809 [TBL] [Abstract][Full Text] [Related]
20. Numerical modeling of wind turbine aerodynamic noise in the time domain. Lee S; Lee S; Lee S J Acoust Soc Am; 2013 Feb; 133(2):EL94-100. PubMed ID: 23363200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]