BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38730881)

  • 1. Performance Comparison of Machine Learning Models for Concrete Compressive Strength Prediction.
    Sah AK; Hong YM
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65935-65944. PubMed ID: 34327638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance.
    Wan Z; Xu Y; Šavija B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the ANN Hyperparameters on the Forecast Accuracy of RAC's Compressive Strength.
    Almeida TADC; Felix EF; de Sousa CMA; Pedroso GOM; Motta MFB; Prado LP
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack.
    Chen H; Qian C; Liang C; Kang W
    PLoS One; 2018; 13(1):e0191370. PubMed ID: 29346451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning.
    Kovačević M; Lozančić S; Nyarko EK; Hadzima-Nyarko M
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Soft Computing Techniques for the Prediction of Compressive Strength of Bacterial Concrete.
    Almohammed F; Sihag P; Sammen SS; Ostrowski KA; Singh K; Prasad CVSR; Zajdel P
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches.
    Ullah HS; Khushnood RA; Farooq F; Ahmad J; Vatin NI; Ewais DYZ
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Sustainability of Corroded RC Structures: Estimating Steel-to-Concrete Bond Strength with ANN and SVM Algorithms.
    Singh R; Arora HC; Bahrami A; Kumar A; Kapoor NR; Kumar K; Rai HS
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete.
    Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY
    PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods.
    Amin MN; Ahmad A; Khan K; Ahmad W; Nazar S; Faraz MI; Alabdullah AA
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.
    Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature.
    Ahmad M; Hu JL; Ahmad F; Tang XW; Amjad M; Iqbal MJ; Asim M; Farooq A
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Chloride Diffusion Coefficient in Concrete Modified with Supplementary Cementitious Materials Using Machine Learning Algorithms.
    Al Fuhaid AF; Alanazi H
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning.
    Wang M; Kang J; Liu W; Su J; Li M
    PLoS One; 2022; 17(12):e0279293. PubMed ID: 36574382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.