These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38730963)
1. The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H Zhou C; Zhou H; Zhang L Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730963 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel. Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971 [TBL] [Abstract][Full Text] [Related]
3. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels. Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423 [TBL] [Abstract][Full Text] [Related]
4. Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel. Xing X; Zhou J; Zhang S; Zhang H; Li Z; Li Z Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781386 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments. Trautmann A; Mori G; Oberndorfer M; Bauer S; Holzer C; Dittmann C Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824015 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen Embrittlement Detection Technology Using Nondestructive Testing for Realizing a Hydrogen Society. Abiru Y; Nishiguchi H; Maekawa M; Nagata T; Itaya T; Koga M; Nishi T Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274627 [TBL] [Abstract][Full Text] [Related]
8. Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel. Fan X; Mi Z; Yang L; Su H Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614491 [TBL] [Abstract][Full Text] [Related]
9. Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen. Neikter M; Colliander M; de Andrade Schwerz C; Hansson T; Åkerfeldt P; Pederson R; Antti ML Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178389 [TBL] [Abstract][Full Text] [Related]
10. Peculiarities of Fatigue Crack Growth in Steel 17H1S after Long-Term Operations on a Gas Pipeline. Vira V; Krechkovska H; Kulyk V; Duriagina Z; Student O; Vasyliv B; Cherkes V; Loskutova T Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109800 [TBL] [Abstract][Full Text] [Related]
11. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen. Nanninga N; Slifka A; Levy Y; White C J Res Natl Inst Stand Technol; 2010; 115(6):437-52. PubMed ID: 27134796 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging. Oh DK; Kim SG; Shin SH; Hwang B Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410457 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure. Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452 [TBL] [Abstract][Full Text] [Related]
14. A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA). Yin R; Fu R; Gu N; Liu Y Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363309 [TBL] [Abstract][Full Text] [Related]
15. Fatigue Testing of Pipeline Welds and Heat-Affected Zones in Pressurized Hydrogen Gas. Drexler ES; Slifka AJ; Amaro RL; Sowards JW; Connolly MJ; Martin ML; Lauria DS J Res Natl Inst Stand Technol; 2019; 124():1-19. PubMed ID: 34877160 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen Accumulation and Distribution in Pipeline Steel in Intensified Corrosion Conditions. Titov AI; Lun-Fu AV; Gayvaronskiy AV; Bubenchikov MA; Bubenchikov AM; Lider AM; Syrtanov MS; Kudiiarov VN Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31052204 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen embrittlement in ferritic steels. Martin ML; Connolly MJ; DelRio FW; Slifka AJ Appl Phys Rev; 2020; 7(4):. PubMed ID: 34122684 [TBL] [Abstract][Full Text] [Related]
18. Effects of Al-Si Coating and Zn Coating on the Hydrogen Uptake and Embrittlement of Ultra-High Strength Press-Hardened Steel. Jo KR; Cho L; Sulistiyo DH; Seo EJ; Kim SW; De Cooman BC Surf Coat Technol; 2019; 374():. PubMed ID: 31579346 [TBL] [Abstract][Full Text] [Related]
19. Influence of Calcareous Deposits on Hydrogen Embrittlement Susceptibility of Q460 Steel. Xiong X; Yang H; Chen T; Zhang N; Niu T Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473582 [TBL] [Abstract][Full Text] [Related]
20. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel. Kim SG; Kim JY; Hwang B Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]