These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38731436)

  • 21. Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses.
    Clements AL; Sealy JE; Peacock TP; Sadeyen JR; Hussain S; Lycett SJ; Shelton H; Digard P; Iqbal M
    J Virol; 2020 Sep; 94(20):. PubMed ID: 32727875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DF-1 cells.
    Luo C; Liu J; Qi W; Ren X; Lu R; Liao M; Ning Z
    Microbiol Immunol; 2018 May; 62(5):327-340. PubMed ID: 29577370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PA from a Recent H9N2 (G1-Like) Avian Influenza a Virus (AIV) Strain Carrying Lysine 367 Confers Altered Replication Efficiency and Pathogenicity to Contemporaneous H5N1 in Mammalian Systems.
    Mostafa A; Mahmoud SH; Shehata M; Müller C; Kandeil A; El-Shesheny R; Nooh HZ; Kayali G; Ali MA; Pleschka S
    Viruses; 2020 Sep; 12(9):. PubMed ID: 32962203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liu Shen Wan inhibits influenza a virus and excessive virus-induced inflammatory response via suppression of TLR4/NF-κB signaling pathway in vitro and in vivo.
    Ma Q; Huang W; Zhao J; Yang Z
    J Ethnopharmacol; 2020 Apr; 252():112584. PubMed ID: 31972325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells.
    Lin J; Xia J; Zhang T; Zhang K; Yang Q
    Oncogene; 2018 Aug; 37(33):4562-4580. PubMed ID: 29743596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells.
    Zhou B; Yang Z; Feng Q; Liang X; Li J; Zanin M; Jiang Z; Zhong N
    J Ethnopharmacol; 2017 Mar; 199():60-67. PubMed ID: 28119097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cirsimaritin inhibits influenza A virus replication by downregulating the NF-κB signal transduction pathway.
    Yan H; Wang H; Ma L; Ma X; Yin J; Wu S; Huang H; Li Y
    Virol J; 2018 May; 15(1):88. PubMed ID: 29783993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broad-spectrum neutralization of avian influenza viruses by sialylated human milk oligosaccharides: in vivo assessment of 3'-sialyllactose against H9N2 in chickens.
    Pandey RP; Kim DH; Woo J; Song J; Jang SH; Kim JB; Cheong KM; Oh JS; Sohng JK
    Sci Rep; 2018 Feb; 8(1):2563. PubMed ID: 29416087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recombinant chicken interferon-α inhibits H9N2 avian influenza virus replication in vivo by oral administration.
    Meng S; Yang L; Xu C; Qin Z; Xu H; Wang Y; Sun L; Liu W
    J Interferon Cytokine Res; 2011 Jul; 31(7):533-8. PubMed ID: 21323426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection.
    Yan B; Zhang J; Zhang W; Wang M; Jia R; Zhu D; Liu M; Yang Q; Wu Y; Sun K; Chen X; Cheng A; Chen S
    Immunol Lett; 2017 Jan; 181():6-15. PubMed ID: 27832963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In ovo administration of retinoic acid enhances cell-mediated immune responses against an inactivated H9N2 avian influenza virus vaccine.
    Alizadeh M; Raj S; Shojadoost B; Matsuyama-Kato A; Boodhoo N; Abdelaziz K; Sharif S
    Vaccine; 2023 Nov; 41(48):7281-7289. PubMed ID: 37923694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt.
    Naguib MM; Arafa AS; El-Kady MF; Selim AA; Gunalan V; Maurer-Stroh S; Goller KV; Hassan MK; Beer M; Abdelwhab EM; Harder TC
    Infect Genet Evol; 2015 Aug; 34():278-91. PubMed ID: 26049044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic Compatibility of Reassortants between Avian H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals.
    Arai Y; Ibrahim MS; Elgendy EM; Daidoji T; Ono T; Suzuki Y; Nakaya T; Matsumoto K; Watanabe Y
    J Virol; 2019 Feb; 93(4):. PubMed ID: 30463961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of infective dose of H9N2 Avian Influenza virus in different routes: aerosol, intranasal, and gastrointestinal.
    Yao M; Lv J; Huang R; Yang Y; Chai T
    Intervirology; 2014; 57(6):369-74. PubMed ID: 25341409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cappariloside A shows antiviral and better anti-inflammatory effects against influenza virus via regulating host IFN signaling, in vitro and vivo.
    Li Z; Zhao J; Zhou H; Li L; Ding Y; Li J; Zhou B; Jiang H; Zhong N; Hu W; Yang Z
    Life Sci; 2018 May; 200():115-125. PubMed ID: 29555588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways.
    Dai JP; Wang QW; Su Y; Gu LM; Deng HX; Chen XX; Li WZ; Li KS
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29570670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a DAS-ELISA for detection of H9N2 avian influenza virus.
    Ming F; Cheng Y; Ren C; Suolang S; Zhou H
    J Virol Methods; 2019 Jan; 263():38-43. PubMed ID: 30355516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-infection of H9N2 subtype avian influenza virus and infectious bronchitis virus decreases SP-A expression level in chickens.
    Huang Q; Wang K; Pan L; Qi K; Liu H; Chen H
    Vet Microbiol; 2017 May; 203():110-116. PubMed ID: 28619132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The crude extract from the flowers of Trollius chinensis Bunge exerts anti-influenza virus effects through modulation of the TLR3 signaling pathway.
    Liang Y; Liu X; Hu J; Huang S; Ma X; Liu X; Wang R; Hu X
    J Ethnopharmacol; 2023 Jan; 300():115743. PubMed ID: 36152783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of an inactivated influenza vaccine adjuvanted with Toll-like receptor ligands against transmission of H9N2 avian influenza virus in chickens.
    Raj S; Alizadeh M; Matsuyama-Kato A; Boodhoo N; Denis MS; Nagy É; Mubareka S; Karimi K; Behboudi S; Sharif S
    Vet Immunol Immunopathol; 2024 Feb; 268():110715. PubMed ID: 38219434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.