These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38731483)
1. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Wang X; Li D; Yue S; Yuan Z; Li S Molecules; 2024 Apr; 29(9):. PubMed ID: 38731483 [TBL] [Abstract][Full Text] [Related]
2. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
3. High-Yield Di-Rhamnolipid Production by Li Z; Zhang Y; Lin J; Wang W; Li S Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013 [TBL] [Abstract][Full Text] [Related]
4. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
5. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
6. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
7. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
8. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
9. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Wittgens A; Santiago-Schuebel B; Henkel M; Tiso T; Blank LM; Hausmann R; Hofmann D; Wilhelm S; Jaeger KE; Rosenau F Appl Microbiol Biotechnol; 2018 Feb; 102(3):1229-1239. PubMed ID: 29264775 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
11. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F; Yuan M; Lei L; Li C; Xu X Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
13. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037 [TBL] [Abstract][Full Text] [Related]
14. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
15. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
16. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water. Liu JF; Wu G; Yang SZ; Mu BZ World J Microbiol Biotechnol; 2014 May; 30(5):1473-84. PubMed ID: 24297330 [TBL] [Abstract][Full Text] [Related]
18. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Shatila F; Diallo MM; Şahar U; Ozdemir G; Yalçın HT Arch Microbiol; 2020 Aug; 202(6):1407-1417. PubMed ID: 32173773 [TBL] [Abstract][Full Text] [Related]
19. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563 [TBL] [Abstract][Full Text] [Related]
20. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]