BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 38731512)

  • 21. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review.
    Shakerian F; Zhao J; Li SP
    Chemosphere; 2020 Jan; 239():124716. PubMed ID: 31521938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioremediation and bioscavenging for elimination of organophosphorus threats: An approach using enzymatic advancements.
    Jaiswal S; Singh B; Dhingra I; Joshi A; Kodgire P
    Environ Res; 2024 Jul; 252(Pt 2):118888. PubMed ID: 38599448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds.
    Wojcieszyńska D; Marchlewicz A; Guzik U
    Molecules; 2020 Sep; 25(19):. PubMed ID: 33003396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilized Soybean Peroxidase Hybrid Biocatalysts for Efficient Degradation of Various Emerging Pollutants.
    Morsi R; Al-Maqdi KA; Bilal M; Iqbal HMN; Khaleel A; Shah I; Ashraf SS
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34204500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review.
    Sutaoney P; Pandya S; Gajarlwar D; Joshi V; Ghosh P
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86499-86527. PubMed ID: 35771325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment.
    Jeong SW; Choi YJ
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Candida in the bioremediation of pollutants: a review.
    Rana S; Handa S; Aggarwal Y; Puri S; Chatterjee M
    Lett Appl Microbiol; 2023 Sep; 76(9):. PubMed ID: 37673682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y.
    Taghizadeh T; Talebian-Kiakalaieh A; Jahandar H; Amin M; Tarighi S; Faramarzi MA
    J Hazard Mater; 2020 Mar; 386():121950. PubMed ID: 31881496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The organization of the microbial biodegradation network from a systems-biology perspective.
    Pazos F; Valencia A; De Lorenzo V
    EMBO Rep; 2003 Oct; 4(10):994-9. PubMed ID: 12973298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis.
    Gao Y; Shah K; Kwok I; Wang M; Rome LH; Mahendra S
    Biotechnol Adv; 2022; 57():107936. PubMed ID: 35276253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of immobilized laccase on Luffa Cylindrica fibers and assessment of synthetic hormone degradation.
    Lacerda MFAR; Lopes FM; Sartoratto A; Ponezi AN; Thomaz DV; Schimidt F; Santiago MF
    Prep Biochem Biotechnol; 2019; 49(1):58-63. PubMed ID: 30388953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System.
    Bilal M; Asgher M; Iqbal HMN; Hu H; Wang W; Zhang X
    Int J Biol Macromol; 2017 Sep; 102():582-590. PubMed ID: 28431941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications.
    Liang X; Liu Y; Wen K; Jiang W; Li Q
    J Mater Chem B; 2021 Sep; 9(37):7597-7607. PubMed ID: 34596205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removing environmental organic pollutants with bioremediation and phytoremediation.
    Kang JW
    Biotechnol Lett; 2014 Jun; 36(6):1129-39. PubMed ID: 24563299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems.
    Bilal M; Iqbal HMN; Barceló D
    Sci Total Environ; 2019 Dec; 695():133896. PubMed ID: 31756868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of enzymes on functionalized cellulose nanofibrils for bioremediation of antibiotics: Degradation mechanism, kinetics, and thermodynamic study.
    Galodiya MN; Chakma S
    Chemosphere; 2024 Feb; 349():140803. PubMed ID: 38040249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pollutant degradation by white rot fungi.
    Barr DP; Aust SD
    Rev Environ Contam Toxicol; 1994; 138():49-72. PubMed ID: 7938784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water.
    Elmerhi N; Al-Maqdi K; Athamneh K; Mohammed AK; Skorjanc T; Gándara F; Raya J; Pascal S; Siri O; Trabolsi A; Shah I; Shetty D; Ashraf SS
    J Hazard Mater; 2023 Oct; 459():132261. PubMed ID: 37572608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilized biocatalytic process development and potential application in membrane separation: a review.
    Chakraborty S; Rusli H; Nath A; Sikder J; Bhattacharjee C; Curcio S; Drioli E
    Crit Rev Biotechnol; 2016; 36(1):43-58. PubMed ID: 25025272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals.
    Harms H; Schlosser D; Wick LY
    Nat Rev Microbiol; 2011 Mar; 9(3):177-92. PubMed ID: 21297669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.