These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38731555)
1. Theoretical Study of Cyanidin-Resveratrol Copigmentation by the Functional Density Theory. Chávez BY; Paz JL; Gonzalez-Paz LA; Alvarado YJ; Contreras JS; Loroño-González MA Molecules; 2024 Apr; 29(9):. PubMed ID: 38731555 [TBL] [Abstract][Full Text] [Related]
2. The structure of anthocyanins and the copigmentation by common micromolecular copigments: A review. Wang J; Zhao Y; Sun B; Yang Y; Wang S; Feng Z; Li J Food Res Int; 2024 Jan; 176():113837. PubMed ID: 38163689 [TBL] [Abstract][Full Text] [Related]
3. Tuning color variation in grape anthocyanins at the molecular scale. Rustioni L; Di Meo F; Guillaume M; Failla O; Trouillas P Food Chem; 2013 Dec; 141(4):4349-57. PubMed ID: 23993625 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Zhao X; Ding BW; Qin JW; He F; Duan CQ Food Chem; 2020 Oct; 326():126960. PubMed ID: 32413752 [TBL] [Abstract][Full Text] [Related]
5. Effects of organic acids on color intensification, thermodynamics, and copigmentation interactions with anthocyanins. Lv X; Li L; Lu X; Wang W; Sun J; Liu Y; Mu J; Ma Q; Wang J Food Chem; 2022 Dec; 396():133691. PubMed ID: 35842999 [TBL] [Abstract][Full Text] [Related]
6. Effects of sucrose and copigment sources on the major anthocyanins isolated from sour cherries. Türkyılmaz M; Hamzaoğlu F; Özkan M Food Chem; 2019 May; 281():242-250. PubMed ID: 30658754 [TBL] [Abstract][Full Text] [Related]
7. Stability Enhancement of Anthocyanins from Blackcurrant ( Azman EM; Yusof N; Chatzifragkou A; Charalampopoulos D Molecules; 2022 Aug; 27(17):. PubMed ID: 36080257 [TBL] [Abstract][Full Text] [Related]
8. Effect of co-pigments on anthocyanins of Rhododendron arboreum and insights into interaction mechanism. Sendri N; Singh S; Sharma B; Purohit R; Bhandari P Food Chem; 2023 Nov; 426():136571. PubMed ID: 37331145 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments. Limón PM; Gavara R; Pina F J Agric Food Chem; 2013 Jun; 61(22):5245-51. PubMed ID: 23697334 [TBL] [Abstract][Full Text] [Related]
10. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Trouillas P; Sancho-García JC; De Freitas V; Gierschner J; Otyepka M; Dangles O Chem Rev; 2016 May; 116(9):4937-82. PubMed ID: 26959943 [TBL] [Abstract][Full Text] [Related]
11. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Chatham LA; Howard JE; Juvik JA Food Chem; 2020 Apr; 310():125734. PubMed ID: 31791725 [TBL] [Abstract][Full Text] [Related]
12. Theoretical Characterization by Density Functional Theory (DFT) of Delphinidin 3- Márquez-Rodríguez AS; Grajeda-Iglesias C; Sánchez-Bojorge NA; Figueroa-Espinoza MC; Rodríguez-Valdez LM; Fuentes-Montero ME; Salas E Molecules; 2018 Jun; 23(7):. PubMed ID: 29966272 [TBL] [Abstract][Full Text] [Related]
13. Highlights on Anthocyanin Pigmentation and Copigmentation: A Matter of Flavonoid π-Stacking Complexation To Be Described by DFT-D. Di Meo F; Sancho Garcia JC; Dangles O; Trouillas P J Chem Theory Comput; 2012 Jun; 8(6):2034-43. PubMed ID: 26593835 [TBL] [Abstract][Full Text] [Related]
14. Structural features of copigmentation of oenin with different polyphenol copigments. Teixeira N; Cruz L; Brás NF; Mateus N; Ramos MJ; de Freitas V J Agric Food Chem; 2013 Jul; 61(28):6942-8. PubMed ID: 23829187 [TBL] [Abstract][Full Text] [Related]
15. Effects of high hydrostatic pressure-assisted organic acids on the copigmentation of Vitis amurensis Rupr anthocyanins. He Y; Wen L; Yu H; Zheng F; Wang Z; Xu X; Zhang H; Cao Y; Wang B; Chu B; Hao J Food Chem; 2018 Dec; 268():15-26. PubMed ID: 30064742 [TBL] [Abstract][Full Text] [Related]
16. Evidence for copigmentation interactions between deoxyanthocyanidin derivatives (oaklins) and common copigments in wine model solutions. Sousa A; Araújo P; Cruz L; Brás NF; Mateus N; De Freitas V J Agric Food Chem; 2014 Jul; 62(29):6995-7001. PubMed ID: 24392836 [TBL] [Abstract][Full Text] [Related]
17. Charge-transfer complexation as a general phenomenon in the copigmentation of anthocyanins. Ferreira da Silva P; Lima JC; Freitas AA; Shimizu K; Maçanita AL; Quina FH J Phys Chem A; 2005 Aug; 109(32):7329-38. PubMed ID: 16834098 [TBL] [Abstract][Full Text] [Related]
18. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Fan L; Wang Y; Xie P; Zhang L; Li Y; Zhou J Food Chem; 2019 Mar; 275():299-308. PubMed ID: 30724200 [TBL] [Abstract][Full Text] [Related]
19. pH-regulated interaction modes between cyanidin-3-glucoside and phenylboronic acid-modified alginate. Cruz L; Mateus N; de Freitas V Carbohydr Polym; 2022 Mar; 280():119029. PubMed ID: 35027131 [TBL] [Abstract][Full Text] [Related]
20. Mimicking Positive and Negative Copigmentation Effects in Anthocyanin Analogues by Host-Guest Interaction with Cucurbit[7]uril and β-Cyclodextrins. Basílio N; Cabrita L; Pina F J Agric Food Chem; 2015 Sep; 63(35):7624-9. PubMed ID: 25891490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]