These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38731555)

  • 21. Enhancing anthocyanin-phenolic copigmentation through epicarp layer treatment and edible coatings to retain anthocyanins in thermally processed whole blueberries.
    Jung J; Lin CY; Zhao Y
    J Food Sci; 2022 Sep; 87(9):3809-3821. PubMed ID: 35978552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetylation of Malvidin-3-
    Zhao X; Zhang X; He X; Duan C; He F
    J Agric Food Chem; 2021 Jul; 69(27):7733-7741. PubMed ID: 34192464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects and mechanism of natural phenolic acids/fatty acids on copigmentation of purple sweet potato anthocyanins.
    Lv X; Mu J; Wang W; Liu Y; Lu X; Sun J; Wang J; Ma Q
    Curr Res Food Sci; 2022; 5():1243-1250. PubMed ID: 36032044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation.
    Xue J; Su F; Meng Y; Guo Y
    J Sci Food Agric; 2019 May; 99(7):3381-3390. PubMed ID: 30584804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies used by nature to fix the red, purple and blue colours in plants: a physical chemistry approach.
    Basílio N; Mendoza J; Seco A; Oliveira J; de Freitas V; Pina F
    Phys Chem Chem Phys; 2021 Nov; 23(42):24080-24101. PubMed ID: 34694309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase in thermal stability of strawberry anthocyanins with amino acid copigmentation.
    Bingöl A; Türkyılmaz M; Özkan M
    Food Chem; 2022 Aug; 384():132518. PubMed ID: 35219234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: experimental and theoretical investigations.
    Zhang B; Liu R; He F; Zhou PP; Duan CQ
    Food Chem; 2015 Mar; 170():226-33. PubMed ID: 25306339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oenin and Quercetin Copigmentation: Highlights From Density Functional Theory.
    Li Y; Prejanò M; Toscano M; Russo N
    Front Chem; 2018; 6():245. PubMed ID: 30003074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intramolecular copigmentation in malvidin-3-O-(6-O-p-coumaryl)-glucoside: Insights from experimental and theoretical study.
    Zhao X; He XM; Liu F; Duan CQ; He F
    Food Chem; 2022 Oct; 391():133255. PubMed ID: 35609464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins.
    Tan C; Dadmohammadi Y; Lee MC; Abbaspourrad A
    Compr Rev Food Sci Food Saf; 2021 Jul; 20(4):3164-3191. PubMed ID: 34118125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. p-Hydroxyphenyl-pyranoanthocyanins: An Experimental and Theoretical Investigation of Their Acid-Base Properties and Molecular Interactions.
    Vallverdú-Queralt A; Biler M; Meudec E; Guernevé CL; Vernhet A; Mazauric JP; Legras JL; Loonis M; Trouillas P; Cheynier V; Dangles O
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of a pectic polysaccharide on oenin copigmentation mechanism.
    Fernandes A; Brás NF; Oliveira J; Mateus N; de Freitas V
    Food Chem; 2016 Oct; 209():17-26. PubMed ID: 27173529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilization of anthocyanin and skullcap flavone complexes--investigations with computer simulation and experimental methods.
    Kalisz S; Oszmiański J; Hładyszowski J; Mitek M
    Food Chem; 2013 May; 138(1):491-500. PubMed ID: 23265516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems.
    Zhao X; He F; Zhang XK; Shi Y; Duan CQ
    Food Chem; 2022 May; 375():131670. PubMed ID: 34848083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increase in colour stability of pomegranate juice against 5-hydroxymethylfurfural (HMF) through copigmentation with phenolic acids.
    Türkyılmaz M; Hamzaoğlu F; Çiftci RBA; Özkan M
    J Sci Food Agric; 2023 Dec; 103(15):7836-7848. PubMed ID: 37463326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution.
    Fenger JA; Moloney M; Robbins RJ; Collins TM; Dangles O
    Food Funct; 2019 Oct; 10(10):6740-6751. PubMed ID: 31576890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.
    Reda SM; Soliman KA
    Appl Opt; 2016 Feb; 55(4):838-45. PubMed ID: 26836089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Color properties of four cyanidin-pyruvic acid adducts.
    Oliveira J; Fernandes V; Miranda C; Santos-Buelga C; Silva A; de Freitas V; Mateus N
    J Agric Food Chem; 2006 Sep; 54(18):6894-903. PubMed ID: 16939355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of copigmentation on stability of anthocyanins from purple potato peel in both liquid state and solid state.
    Zhang C; Ma Y; Zhao X; Mu J
    J Agric Food Chem; 2009 Oct; 57(20):9503-8. PubMed ID: 19791791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.