These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38731723)
1. Development of a Novel HS-GC/MS Method Using the Total Ion Spectra Combined with Machine Learning for the Intelligent and Automatic Evaluation of Food-Grade Paraffin Wax Odor Level. Barea-Sepúlveda M; Calle JLP; Ferreiro-González M; Palma M Foods; 2024 Apr; 13(9):. PubMed ID: 38731723 [TBL] [Abstract][Full Text] [Related]
2. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples. Men H; Fu S; Yang J; Cheng M; Shi Y; Liu J Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29346328 [TBL] [Abstract][Full Text] [Related]
3. Novel Method Based on Ion Mobility Spectrometry Combined with Machine Learning for the Discrimination of Fruit Juices. Calle JLP; Vázquez-Espinosa M; Barea-Sepúlveda M; Ruiz-Rodríguez A; Ferreiro-González M; Palma M Foods; 2023 Jun; 12(13):. PubMed ID: 37444273 [TBL] [Abstract][Full Text] [Related]
4. Rapid Classification of Petroleum Waxes: A Vis-NIR Spectroscopy and Machine Learning Approach. Barea-Sepúlveda M; Calle JLP; Ferreiro-González M; Palma M Foods; 2023 Sep; 12(18):. PubMed ID: 37761070 [TBL] [Abstract][Full Text] [Related]
5. Authenticity assessment of ground black pepper by combining headspace gas-chromatography ion mobility spectrometry and machine learning. Zacometti C; Sammarco G; Massaro A; Lefevre S; Frégière-Salomon A; Lafeuille JL; Candalino IF; Piro R; Tata A; Suman M Food Res Int; 2024 Mar; 179():114023. PubMed ID: 38342542 [TBL] [Abstract][Full Text] [Related]
6. Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS. Qi H; Ding S; Pan Z; Li X; Fu F Molecules; 2020 Dec; 25(24):. PubMed ID: 33352716 [TBL] [Abstract][Full Text] [Related]
8. Comparative Analysis of Volatile Compounds in the Flower Buds of Three Yue Y; Yin J; Xie J; Wu S; Ding H; Han L; Bie S; Song W; Zhang Y; Song X; Yu H; Li Z Molecules; 2024 Jan; 29(3):. PubMed ID: 38338347 [TBL] [Abstract][Full Text] [Related]
9. Development of a Measurement System Using Infrared Spectroscopy-Attenuated Total Reflectance, Principal Component Analysis and Artificial Intelligence for the Safe Quantification of the Nucleating Agent Sorbitol in Food Packaging. Hernández-Fernández J; Martinez-Trespalacios J; Marquez E Foods; 2024 Apr; 13(8):. PubMed ID: 38672873 [TBL] [Abstract][Full Text] [Related]
10. An automated ranking platform for machine learning regression models for meat spoilage prediction using multi-spectral imaging and metabolic profiling. Estelles-Lopez L; Ropodi A; Pavlidis D; Fotopoulou J; Gkousari C; Peyrodie A; Panagou E; Nychas GJ; Mohareb F Food Res Int; 2017 Sep; 99(Pt 1):206-215. PubMed ID: 28784477 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Tarlak F; Yücel Ö Life (Basel); 2023 Jun; 13(7):. PubMed ID: 37511805 [TBL] [Abstract][Full Text] [Related]
12. Determination of benzene in polypropylene food-packaging materials and food-contact paraffin waxes. Varner SL; Hollifield HC; Andrzejewski D J Assoc Off Anal Chem; 1991; 74(2):367-74. PubMed ID: 2050616 [TBL] [Abstract][Full Text] [Related]
13. Discrimination and screening of volatile metabolites in atractylodis rhizoma from different varieties using headspace solid-phase microextraction-gas chromatography-mass spectrometry and headspace gas chromatography-ion mobility spectrometry, and ultra-fast gas chromatography electronic nose. Peng L; Wang X; He M; Sha X; Dou Z; Xiao L; Li W J Chromatogr A; 2024 Jun; 1725():464931. PubMed ID: 38703457 [TBL] [Abstract][Full Text] [Related]
14. Headspace Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry for the Determination of 2-Nonenal and Its Application to Body Odor Analysis. Saito K; Tokorodani Y; Sakamoto C; Kataoka H Molecules; 2021 Sep; 26(19):. PubMed ID: 34641283 [TBL] [Abstract][Full Text] [Related]
15. Development of Fast Analytical Method for the Detection and Quantification of Honey Adulteration Using Vibrational Spectroscopy and Chemometrics Tools. Elhamdaoui O; El Orche A; Cheikh A; Mojemmi B; Nejjari R; Bouatia M J Anal Methods Chem; 2020; 2020():8816249. PubMed ID: 33425426 [TBL] [Abstract][Full Text] [Related]
16. Gas-phase volatilomic approaches for quality control of brewing hops based on simultaneous GC-MS-IMS and machine learning. Brendel R; Schwolow S; Rohn S; Weller P Anal Bioanal Chem; 2020 Oct; 412(26):7085-7097. PubMed ID: 32754792 [TBL] [Abstract][Full Text] [Related]
17. Untargeted rapid differentiation and targeted growth tracking of fungal contamination in rice grains based on headspace-gas chromatography-ion mobility spectrometry. Gu S; Wang Z; Wang J J Sci Food Agric; 2022 Jul; 102(9):3673-3682. PubMed ID: 34890123 [TBL] [Abstract][Full Text] [Related]
18. Application of Sensory Evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for Quality Detection in Citrus Fruits. Qiu S; Wang J J Food Sci; 2015 Oct; 80(10):S2296-304. PubMed ID: 26416698 [TBL] [Abstract][Full Text] [Related]
19. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Gerhardt N; Schwolow S; Rohn S; Pérez-Cacho PR; Galán-Soldevilla H; Arce L; Weller P Food Chem; 2019 Apr; 278():720-728. PubMed ID: 30583434 [TBL] [Abstract][Full Text] [Related]
20. Headspace Gas Chromatography Coupled to Mass Spectrometry and Ion Mobility Spectrometry: Classification of Virgin Olive Oils as a Study Case. García-Nicolás M; Arroyo-Manzanares N; Arce L; Hernández-Córdoba M; Viñas P Foods; 2020 Sep; 9(9):. PubMed ID: 32937810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]