BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38731865)

  • 1. Process Intensification for Enhanced Fluoride Removal and Recovery as Calcium Fluoride Using a Fluidized Bed Reactor.
    Sinharoy A; Lee GY; Chung CM
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Calcium Fluoride Crystallization Process for Treatment of High-Concentration Fluoride-Containing Semiconductor Industry Wastewater.
    Sinharoy A; Lee GY; Chung CM
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor.
    Aldaco R; Garea A; Irabien A
    Water Res; 2007 Feb; 41(4):810-8. PubMed ID: 17234235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stratified control of chemical crystallization in a pellet fluidized bed for pH-Adjusted fluoride and phosphate reduction: An experimental study.
    Hu R; Li S; Li K; Huang T; Liu Z; Wen G
    Environ Res; 2024 Jul; 252(Pt 2):118873. PubMed ID: 38604484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using fluidized bed crystallization process.
    Zeng G; Ling B; Li Z; Luo S; Sui X; Guan Q
    J Hazard Mater; 2019 Jul; 373():313-320. PubMed ID: 30925391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth kinetics of calcium fluoride at high supersaturation in a fluidized bed reactor.
    Jiang K; Zhou KG; Yang YC; Du H
    Environ Technol; 2014; 35(1-4):82-8. PubMed ID: 24600844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.
    Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC
    Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of Cu(II) from aqueous solution by induced crystallization in a long-term operation.
    Wei Z; Xiong Y; Chen J; Bai J; Wu J; Zuo J; Wang K
    J Environ Sci (China); 2018 Jul; 69():183-191. PubMed ID: 29941254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor.
    Jiang K; Zhou K; Yang Y; Du H
    J Environ Sci (China); 2013 Jul; 25(7):1331-7. PubMed ID: 24218844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barium recovery by crystallization in a fluidized-bed reactor: effects of pH, Ba/P molar ratio and seed.
    Su CC; Reano RL; Dalida ML; Lu MC
    Chemosphere; 2014 Jun; 105():100-5. PubMed ID: 24462085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch fluidized bed reactor based modified biosynthetic crystals: Optimization of adsorptive properties and application in fluoride removal from groundwater.
    Wang Z; Ali A; Su J; Hu X; Zhang R; Yang W; Wu Z
    Chemosphere; 2021 Oct; 281():130841. PubMed ID: 33991902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced recovery of aluminum from wastewater using a fluidized bed homogeneously dispersed granular reactor.
    Vilando AC; Caparanga AR; Lu MC
    Chemosphere; 2019 May; 223():330-341. PubMed ID: 30784739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and application of alginate-nanocellulose composite beads for defluoridation process in a batch and fluidized bed reactor.
    Das L; Das P; Bhowal A
    J Environ Manage; 2023 Oct; 344():118569. PubMed ID: 37453299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system.
    Sierra-Alvarez R; Hollingsworth J; Zhou MS
    Environ Sci Technol; 2007 Feb; 41(4):1426-31. PubMed ID: 17593752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adsorption of fluoride ions on a Ca-deficient hydroxyapatite].
    Li L; Zhu ZL; Qiu YL; Zhang H; Zhao JF
    Huan Jing Ke Xue; 2010 Jun; 31(6):1554-9. PubMed ID: 20698272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of FBR-Fenton/GAC process for recalcitrant industrial wastewater treatment with a computational fluid dynamics-kinetic model framework.
    Wu MY; Cai QQ; Xu HP; Ong SL; Hu JY
    Water Res; 2021 Sep; 203():117504. PubMed ID: 34388501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal removal from aqueous solution in sequential fluidized-bed reactors.
    Lee CI; Yang WF
    Environ Technol; 2005 Dec; 26(12):1345-53. PubMed ID: 16372569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.
    Estrada-Arriaga EB; Ramirez-Camperos E; Moeller-Chavez GE; García-Sanchez L
    Water Sci Technol; 2012; 66(12):2754-63. PubMed ID: 23109595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.