BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38731875)

  • 1. A Mass Spectrometry Strategy for Protein Quantification Based on the Differential Alkylation of Cysteines Using Iodoacetamide and Acrylamide.
    Virág D; Schlosser G; Borbély A; Gellén G; Papp D; Kaleta Z; Dalmadi-Kiss B; Antal I; Ludányi K
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics.
    Suttapitugsakul S; Xiao H; Smeekens J; Wu R
    Mol Biosyst; 2017 Nov; 13(12):2574-2582. PubMed ID: 29019370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of relative isotopologue abundances for quantitative profiling of complex protein mixtures labelled with the acrylamide/D3-acrylamide alkylation tag system.
    Cahill MA; Wozny W; Schwall G; Schroer K; Hölzer K; Poznanovic S; Hunzinger C; Vogt JA; Stegmann W; Matthies H; Schrattenholz A
    Rapid Commun Mass Spectrom; 2003; 17(12):1283-1290. PubMed ID: 12811751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification.
    Sechi S; Chait BT
    Anal Chem; 1998 Dec; 70(24):5150-8. PubMed ID: 9868912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry.
    Rombouts I; Lagrain B; Brunnbauer M; Delcour JA; Koehler P
    Sci Rep; 2013; 3():2279. PubMed ID: 23880742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass defect labeling of cysteine for improving peptide assignment in shotgun proteomic analyses.
    Hernandez H; Niehauser S; Boltz SA; Gawandi V; Phillips RS; Amster IJ
    Anal Chem; 2006 May; 78(10):3417-23. PubMed ID: 16689545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment.
    Woods AG; Sokolowska I; Darie CC
    Biochem Biophys Res Commun; 2012 Mar; 419(2):305-8. PubMed ID: 22342715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins.
    Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL
    Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MeCAT--new iodoacetamide reagents for metal labeling of proteins and peptides.
    Schwarz G; Beck S; Weller MG; Linscheid MW
    Anal Bioanal Chem; 2011 Sep; 401(4):1203-9. PubMed ID: 21717112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RABA (reductive alkylation by acetone): a novel stable isotope labeling approach for quantitative proteomics.
    Zhai J; Liu X; Huang Z; Zhu H
    J Am Soc Mass Spectrom; 2009 Jul; 20(7):1366-77. PubMed ID: 19419886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics.
    Nadler W; Berg R; Walch P; Hanke S; Baalmann M; Kerner A; Trumpp A; Roesli C
    Anal Bioanal Chem; 2016 Mar; 408(8):2055-67. PubMed ID: 26493978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MTRAQ-based quantitative analysis combined with peptide fractionation based on cysteinyl peptide enrichment.
    Yeom J; Kang MJ; Shin D; Song HK; Lee C; Lee JE
    Anal Biochem; 2015 May; 477():41-9. PubMed ID: 25766576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotope-coded, iodoacetamide-based reagent to determine individual cysteine pK(a) values by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Nelson KJ; Day AE; Zeng BB; King SB; Poole LB
    Anal Biochem; 2008 Apr; 375(2):187-95. PubMed ID: 18162165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylamide--a cysteine alkylating reagent for quantitative proteomics.
    Turko IV; Sechi S
    Methods Mol Biol; 2007; 359():1-16. PubMed ID: 17484107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in the Design of New Isobaric Labeling Reagents for Quantitative Proteomics.
    Bąchor R; Waliczek M; Stefanowicz P; Szewczuk Z
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30781343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved quantitative analysis of mass spectrometry using quadratic equations.
    Yoon JY; Lim KY; Lee S; Park K; Paek E; Kang UB; Yeom J; Lee C
    J Proteome Res; 2010 May; 9(5):2775-85. PubMed ID: 20329765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach.
    Turtoi A; Mazzucchelli GD; De Pauw E
    Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imidazolium-based iodoacetamide functional tags: design, synthesis, and property study for cysteinyl-peptide analysis by mass spectrometry.
    Qiao X; Wang R; Li G; Yan H; Zhou Y; Zhang L; Zhang Y
    Analyst; 2014 Feb; 139(4):705-8. PubMed ID: 24383064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.