These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 38732089)
21. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation. Dutta P; Das S Curr Top Med Chem; 2016; 16(1):99-129. PubMed ID: 26139111 [TBL] [Abstract][Full Text] [Related]
22. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Mazurkiewicz-Pisarek A; Baran J; Ciach T Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240379 [TBL] [Abstract][Full Text] [Related]
23. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Ye Z; Fu L; Li S; Chen Z; Ouyang J; Shang X; Liu Y; Gao L; Wang Y Nat Commun; 2024 Aug; 15(1):7319. PubMed ID: 39183339 [TBL] [Abstract][Full Text] [Related]
24. Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Yazici A; Ortucu S; Taskin M; Marinelli L Curr Top Med Chem; 2018; 18(24):2102-2107. PubMed ID: 30417789 [TBL] [Abstract][Full Text] [Related]
25. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Lv S; Wang J; You R; Liu S; Ding Y; Hadianamrei R; Tomeh MA; Pan F; Cai Z; Zhao X Biomater Sci; 2022 Aug; 10(17):4848-4865. PubMed ID: 35861280 [TBL] [Abstract][Full Text] [Related]
26. The amphipathic design in helical antimicrobial peptides. Bui Thi Phuong H; Doan Ngan H; Le Huy B; Vu Dinh H; Luong Xuan H ChemMedChem; 2024 Apr; 19(7):e202300480. PubMed ID: 38408263 [TBL] [Abstract][Full Text] [Related]
27. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery. Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058 [TBL] [Abstract][Full Text] [Related]
28. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database. Wang G Methods Enzymol; 2022; 663():1-18. PubMed ID: 35168785 [TBL] [Abstract][Full Text] [Related]
29. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242 [TBL] [Abstract][Full Text] [Related]
30. Effect of Secondary Structure and Side Chain Length of Hydrophobic Amino Acid Residues on the Antimicrobial Activity and Toxicity of 14-Residue-Long de novo AMPs. Pandit G; Chowdhury N; Abdul Mohid S; Bidkar AP; Bhunia A; Chatterjee S ChemMedChem; 2021 Jan; 16(2):355-367. PubMed ID: 33026188 [TBL] [Abstract][Full Text] [Related]
31. Lin S; Wade JD; Liu S Acc Chem Res; 2021 Jan; 54(1):104-119. PubMed ID: 33346639 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of antimicrobial and anticancer activities of three peptides identified from the skin secretion of Hylarana latouchii. Lin Y; Lin T; Cheng N; Wu S; Huang J; Chen X; Chen T; Zhou M; Wang L; Shaw C Acta Biochim Biophys Sin (Shanghai); 2021 Nov; 53(11):1469-1483. PubMed ID: 34508563 [TBL] [Abstract][Full Text] [Related]
33. Antimicrobial peptides as an opportunity against bacterial diseases. Galdiero S; Falanga A; Berisio R; Grieco P; Morelli G; Galdiero M Curr Med Chem; 2015; 22(14):1665-77. PubMed ID: 25760092 [TBL] [Abstract][Full Text] [Related]
34. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537 [TBL] [Abstract][Full Text] [Related]
35. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
36. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Thakur A; Sharma A; Alajangi HK; Jaiswal PK; Lim YB; Singh G; Barnwal RP Int J Biol Macromol; 2022 Oct; 218():135-156. PubMed ID: 35868409 [TBL] [Abstract][Full Text] [Related]
37. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Lima AM; Azevedo MIG; Sousa LM; Oliveira NS; Andrade CR; Freitas CDT; Souza PFN Int J Biol Macromol; 2022 Aug; 214():10-21. PubMed ID: 35700843 [TBL] [Abstract][Full Text] [Related]
38. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Priyadarshini D; Ivica J; Separovic F; de Planque MRR Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479 [TBL] [Abstract][Full Text] [Related]
39. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Zhu Y; Hao W; Wang X; Ouyang J; Deng X; Yu H; Wang Y Med Res Rev; 2022 Jul; 42(4):1377-1422. PubMed ID: 34984699 [TBL] [Abstract][Full Text] [Related]
40. Antibacterial and Hemolytic Activity of Antimicrobial Hydrogels Utilizing Immobilized Antimicrobial Peptides. Blomstrand E; Posch E; Stepulane A; Rajasekharan AK; Andersson M Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]