These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 38732145)

  • 41. Anti-CRISPR proteins trigger a burst of CRISPR-Cas9 expression that enhances phage defense.
    Workman RE; Stoltzfus MJ; Keith NC; Euler CW; Bondy-Denomy J; Modell JW
    Cell Rep; 2024 Mar; 43(3):113849. PubMed ID: 38427560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phages, anti-CRISPR proteins, and drug-resistant bacteria: what do we know about this triad?
    Ceballos-Garzon A; Muñoz AB; Plata JD; Sanchez-Quitian ZA; Ramos-Vivas J
    Pathog Dis; 2022 Oct; 80(1):. PubMed ID: 36255384
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In defense of phage: viral suppressors of CRISPR-mediated adaptive immunity in bacteria.
    Wiedenheft B
    RNA Biol; 2013 May; 10(5):886-90. PubMed ID: 23392292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections.
    Wu Y; Battalapalli D; Hakeem MJ; Selamneni V; Zhang P; Draz MS; Ruan Z
    J Nanobiotechnology; 2021 Dec; 19(1):401. PubMed ID: 34863214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9.
    Tao P; Wu X; Rao V
    Sci Adv; 2018 Feb; 4(2):eaar4134. PubMed ID: 29457136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of phage genetic diversity on bacterial resistance evolution.
    Broniewski JM; Meaden S; Paterson S; Buckling A; Westra ER
    ISME J; 2020 Mar; 14(3):828-836. PubMed ID: 31896785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
    Trasanidou D; Gerós AS; Mohanraju P; Nieuwenweg AC; Nobrega FL; Staals RHJ
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077304
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phages amid antimicrobial resistance.
    Mohan Raj JR; Karunasagar I
    Crit Rev Microbiol; 2019; 45(5-6):701-711. PubMed ID: 31775552
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An expanded arsenal of immune systems that protect bacteria from phages.
    Millman A; Melamed S; Leavitt A; Doron S; Bernheim A; Hör J; Garb J; Bechon N; Brandis A; Lopatina A; Ofir G; Hochhauser D; Stokar-Avihail A; Tal N; Sharir S; Voichek M; Erez Z; Ferrer JLM; Dar D; Kacen A; Amitai G; Sorek R
    Cell Host Microbe; 2022 Nov; 30(11):1556-1569.e5. PubMed ID: 36302390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Battle between Bacteria and Bacteriophages: A Conundrum to Their Immune System.
    Teklemariam AD; Al-Hindi RR; Qadri I; Alharbi MG; Ramadan WS; Ayubu J; Al-Hejin AM; Hakim RF; Hakim FF; Hakim RF; Alseraihi LI; Alamri T; Harakeh S
    Antibiotics (Basel); 2023 Feb; 12(2):. PubMed ID: 36830292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correlation of
    Burke KA; Urick CD; Mzhavia N; Nikolich MP; Filippov AA
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338703
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering.
    Liu Q; Zhang H; Huang X
    FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The functional aspects of bacterial CRISPR-cas systems and interactions between phages and its bacterial hosts--a review].
    Fu Q; Sun J; Yan Y
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):251-7. PubMed ID: 26065266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deciphering and shaping bacterial diversity through CRISPR.
    Briner AE; Barrangou R
    Curr Opin Microbiol; 2016 Jun; 31():101-108. PubMed ID: 27045713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resistance is not futile: bacterial 'innate' and CRISPR-Cas 'adaptive' immune systems.
    Fineran PC
    Microbiology (Reading); 2019 Aug; 165(8):834-841. PubMed ID: 30958259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The never-ending battle between lactic acid bacteria and their phages.
    Philippe C; Cornuault JK; de Melo AG; Morin-Pelchat R; Jolicoeur AP; Moineau S
    FEMS Microbiol Rev; 2023 Jul; 47(4):. PubMed ID: 37353926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria.
    Liu H; Li H; Liang Y; Du X; Yang C; Yang L; Xie J; Zhao R; Tong Y; Qiu S; Song H
    Theranostics; 2020; 10(14):6310-6321. PubMed ID: 32483454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases.
    Wandera KG; Alkhnbashi OS; Bassett HVI; Mitrofanov A; Hauns S; Migur A; Backofen R; Beisel CL
    Mol Cell; 2022 Jul; 82(14):2714-2726.e4. PubMed ID: 35649413
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens.
    Ali Y; Inusa I; Sanghvi G; Mandaliya VB; Bishoyi AK
    Microb Pathog; 2023 Aug; 181():106199. PubMed ID: 37336428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.
    Strotskaya A; Savitskaya E; Metlitskaya A; Morozova N; Datsenko KA; Semenova E; Severinov K
    Nucleic Acids Res; 2017 Feb; 45(4):1946-1957. PubMed ID: 28130424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.