BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38732215)

  • 41. A Novel CRISPR/Cas9-Based Cellular Model to Explore Adenylyl Cyclase and cAMP Signaling.
    Soto-Velasquez M; Hayes MP; Alpsoy A; Dykhuizen EC; Watts VJ
    Mol Pharmacol; 2018 Sep; 94(3):963-972. PubMed ID: 29950405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells.
    Long KR; Rbaibi Y; Bondi CD; Ford BR; Poholek AC; Boyd-Shiwarski CR; Tan RJ; Locker JD; Weisz OA
    Am J Physiol Renal Physiol; 2022 Jan; 322(1):F14-F26. PubMed ID: 34747197
    [TBL] [Abstract][Full Text] [Related]  

  • 44. KCTD8 and KCTD12 Facilitate Axonal Expression of GABA
    Ren Y; Liu Y; Zheng S; Luo M
    J Neurosci; 2022 Mar; 42(9):1648-1665. PubMed ID: 35017224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis.
    Singh P; Ali SA; Kumar S; Mohanty AK
    J Proteomics; 2023 Sep; 288():104981. PubMed ID: 37544501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR/Cas9-mediated gene knockout in human adipose stem/progenitor cells.
    Mandl M; Ritthammer H; Ejaz A; Wagner SA; Hatzmann FM; Baumgarten S; Viertler HP; Zwierzina ME; Mattesich M; Schiller V; Rauchenwald T; Ploner C; Waldegger P; Pierer G; Zwerschke W
    Adipocyte; 2020 Dec; 9(1):626-635. PubMed ID: 33070670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generation of IL17RB Knockout Cell Lines Using CRISPR/Cas9-Based Genome Editing.
    Hu O; Provvido A; Zhu Y
    Methods Mol Biol; 2020; 2108():345-353. PubMed ID: 31939193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations.
    Balasco N; Pirone L; Smaldone G; Di Gaetano S; Esposito L; Pedone EM; Vitagliano L
    Biochim Biophys Acta; 2014 Jul; 1844(7):1289-98. PubMed ID: 24747150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Guidelines for optimized gene knockout using CRISPR/Cas9.
    Campenhout CV; Cabochette P; Veillard AC; Laczik M; Zelisko-Schmidt A; Sabatel C; Dhainaut M; Vanhollebeke B; Gueydan C; Kruys V
    Biotechniques; 2019 Jun; 66(6):295-302. PubMed ID: 31039627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR/Cas9-Mediated Genome Editing Reveals
    Abbasi F; Kodani M; Emori C; Kiyozumi D; Mori M; Fujihara Y; Ikawa M
    Cells; 2020 Mar; 9(4):. PubMed ID: 32231122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis for KCTD-mediated rapid desensitization of GABA
    Zheng S; Abreu N; Levitz J; Kruse AC
    Nature; 2019 Mar; 567(7746):127-131. PubMed ID: 30814734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene knockout in highly purified mouse hematopoietic stem cells by CRISPR/Cas9 technology.
    Dong Y; Bai H; Dong F; Zhang XB; Ema H
    J Immunol Methods; 2021 Aug; 495():113070. PubMed ID: 33957108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease.
    Song HY; Chiang HC; Tseng WL; Wu P; Chien CS; Leu HB; Yang YP; Wang ML; Jong YJ; Chen CH; Yu WC; Chiou SH
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27983599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of a Stem Cell Gene: LGR4 Knockout in a Human Cell Line by CRISPR/Cas Method.
    Rot S; Kappler M
    Methods Mol Biol; 2021; 2269():255-268. PubMed ID: 33687685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids.
    Liu X; Cheng Y; Abraham JM; Wang Z; Wang Z; Ke X; Yan R; Shin EJ; Ngamruengphong S; Khashab MA; Zhang G; McNamara G; Ewald AJ; Lin D; Liu Z; Meltzer SJ
    Cancer Lett; 2018 Nov; 436():109-118. PubMed ID: 30144514
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The emerging role of the KCTD proteins in cancer.
    Angrisani A; Di Fiore A; De Smaele E; Moretti M
    Cell Commun Signal; 2021 May; 19(1):56. PubMed ID: 34001146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Encephalopathy-causing mutations in Gβ
    Reddy HP; Yakubovich D; Keren-Raifman T; Tabak G; Tsemakhovich VA; Pedersen MH; Shalomov B; Colombo S; Goldstein DB; Javitch JA; Bera AK; Dascal N
    iScience; 2021 Sep; 24(9):103018. PubMed ID: 34522861
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PMEPA1/TMEPAI isoforms function via its PY and Smad-interaction motifs for tumorigenic activities of breast cancer cells.
    Puteri MU; Watanabe Y; Wardhani BWK; Amalia R; Abdelaziz M; Kato M
    Genes Cells; 2020 Jun; 25(6):375-390. PubMed ID: 32181976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CTCF Expression is Essential for Somatic Cell Viability and Protection Against Cancer.
    Bailey CG; Metierre C; Feng Y; Baidya K; Filippova GN; Loukinov DI; Lobanenkov VV; Semaan C; Rasko JE
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30513694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.